OBJECTIVE 4 Evaluate polynomials. A polynomial usually represents differ-
ent numbers for different values of the variable.
Evaluating a PolynomialFind the value of for (a) and (b)
(a)First, substitute for x.
LetApply the exponents.
Multiply.
Add and subtract.(b)
Let
Apply the exponents.
Multiply.= 362 Add and subtract. NOW TRY
= 243 + 135 - 12 - 4
= 31812 + 51272 - 12 - 4
= 31324 + 51323 - 4132 - 4 x=3.
3 x^4 + 5 x^3 - 4 x- 4
= 12
= 48 - 40 + 8 - 4
= 31162 + 51 - 82 - 41 - 22 - 4
= 31 - 224 + 51 - 223 - 41 - 22 - 4 x=-2.
3 x^4 + 5 x^3 - 4 x- 4
- 2
3 x^4 + 5 x^3 - 4 x- 4 x=- 2 x= 3.
EXAMPLE 4
Use parentheses
to avoid errors.CAUTION Use parentheses around the numbers that are substituted for the vari-
able, as in Example 4.Be particularly careful when substituting a negative number
for a variable that is raised to a power, or a sign error may result.
OBJECTIVE 5 Add and subtract polynomials.
NOW TRY
EXERCISE 4
Find the value for.
4 t^3 - t^2 - tt=- 3NOW TRY
EXERCISE 5
Add and
y^3 - y- 7 vertically.
4 y^3 - 2 y^2 +y- 1NOW TRY ANSWERS
4.
- 5 y^3 - 2 y^2 - 8
- 114
Adding Polynomials Vertically(a)Add and
Now add, column by column.
Add the three sums together.
Final sum(b)Add and
Write like terms in columns and add column by column.
x^3 + 2 x^2 + x+ 3 NOW TRY
x^3 + 5 x
2 x^2 - 4 x+ 3
2 x^2 - 4 x+ 3 x^3 + 5 x.
4 x^3 + 3 x^2 + 1 - 22 = 4 x^3 + 3 x^2 - 2
4 x^33 x^2 - 2
- 2 x^37 x^2 - 5
6 x^3 - 4 x^23
- 2 x^3 + 7 x^2 - 5
6 x^3 - 4 x^2 + 3
6 x^3 - 4 x^2 + 3 - 2 x^3 + 7 x^2 - 5.
EXAMPLE 5
322 CHAPTER 5 Exponents and Polynomials
Combine the
coefficients only.
Do notadd the
exponents.Leave spaces for
missing terms.Adding Polynomials
To add two polynomials, add like terms.Write like terms in columns.Replace xwith 3.http://www.ebook777.com
http://www.ebook777.com