SECTION 5.6 Special Products^337
Finding the Product of the Sum and Difference of Two Terms
Find each product.
(a)
Use the rule for the product of the sum and difference of two terms.
Apply the exponents.
(b)
= 16 x^2 - y^2
= 14 x 22 - y^2
14 x+ y 214 x-y 2
= 25 m^2 - 9
= 15 m 22 - 32 1 x+y 21 x-y 2 =x^2 - y^2
15 m+ 3215 m- 32
15 m+ 3215 m- 32
1 x + y 2 1 x - y 2
NOW TRY EXAMPLE 4
EXERCISE 4
Find each product.
(a)
(b)
(c)y 13 y+ 1213 y- 12
A 5 r-^45 BA 5 r+^45 B
14 x- 6214 x+ 62
NOW TRY
EXERCISE 5
Find the product.
12 m- 123
NOW TRY ANSWERS
- (a)
(b)
(c) 9 y^3 - y
25 r^2 -^1625
16 x^2 - 36
(c)
= z^2 -
1
16
az-
1
4
baz+
1
4
b
(d)
Distributive property NOW TRY
OBJECTIVE 3 Find greater powers of binomials.The methods used in the
previous section and this section can be combined to find greater powers of binomials.
Finding Greater Powers of Binomials
Find each product.
(a)
Square the binomial.
Multiply polynomials.
Combine like terms.
(b)
Square each binomial.
Multiply polynomials.
Combine like terms.
(c)
Square the binomial.
Multiply polynomials.
Combine like terms.
=- 2 r^4 - 12 r^3 - 24 r^2 - 16 r Multiply. NOW TRY
=- 2 r 1 r^3 + 6 r^2 + 12 r+ 82
=- 2 r 1 r^3 + 4 r^2 + 4 r+ 2 r^2 + 8 r + 82
=- 2 r 1 r + 221 r^2 + 4 r+ 42
=- 2 r 1 r + 221 r+ 222 a^3 =a#a^2
- 2 r 1 r+ 223
= 16 y^4 - 96 y^3 + 216 y^2 - 216 y+ 81
- 108 y+ 36 y^2 - 108 y+ 81
= 16 y^4 - 48 y^3 + 36 y^2 - 48 y^3 + 144 y^2
= 14 y^2 - 12 y+ 9214 y^2 - 12 y+ 92
= 12 y- 32212 y- 322 a^4 =a^2 #a^2
12 y- 324
= x^3 + 15 x^2 + 75 x+ 125
= x^3 + 10 x^2 + 25 x+ 5 x^2 + 50 x+ 125
= 1 x^2 + 10 x+ 2521 x+ 52
= 1 x+ 5221 x+ 52 a^3 =a^2 #a
1 x+ 523
EXAMPLE 5
= 4 p^3 - p
= p 14 p^2 - 12
p 12 p+ 1212 p- 12
- 8 m^3 - 12 m^2 + 6 m- 1