Beginning Algebra, 11th Edition

(Marvins-Underground-K-12) #1
43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

If a trinomial has a negative coefficient for the squared term, as in , it is
usually easier to factor by first factoring out the common factor

Use this method to factor each trinomial. See Example 7( b).





















Brain Busters Factor each polynomial. (Hint:As the first step, factor out the greatest com-
mon factor.)
85.
86.
87.
88.

Brain Busters Find all integers k so that the trinomial can be factored by the methods of
this section.








  1. 2 m^2 +km+ 5 92. 3 y^2 +ky+ 4


5 x^2 +kx- 1 2 x^2 +kx- 3

4 t^21 k+ 927 + 20 ts 1 k+ 927 + 25 s^21 k+ 927

9 x^21 r+ 323 + 12 xy 1 r+ 323 + 4 y^21 r+ 323

18 x^21 y- 322 - 21 x 1 y- 322 - 41 y- 322

25 q^21 m+ 123 - 5 q 1 m+ 123 - 21 m+ 123


  • 2 a^2 - 5 ab- 2 b^2 - 3 p^2 + 13 pq- 4 q^2

  • 3 x^2 - x+ 4 - 5 x^2 + 2 x+ 16

  • x^2 - 4 x+ 21 - x^2 +x+ 72


=- 112 x- 321 x- 42

=- 112 x^2 - 11 x+ 122


  • 2 x^2 + 11 x- 12


- 1.


  • 2 x^2 + 11 x- 12


24 x^2 + 38 xy+ 15 y^224 x^2 + 62 xy+ 33 y^2

24 x^4 + 55 x^2 - 24 24 x^4 + 17 x^2 - 20

24 x^2 - 46 x+ 15 24 x^2 - 94 x+ 35

36 a^3 b^2 - 104 a^2 b^2 - 12 ab^236 p^4 q+ 129 p^3 q- 60 p^2 q

10 x^4 y^5 + 39 x^3 y^5 - 4 x^2 y^514 x^7 y^4 - 31 x^6 y^4 + 6 x^5 y^4

48 a^2 - 94 ab- 4 b^248 t^2 - 147 ts+ 9 s^2

36 x^4 - 64 x^2 y+ 15 y^236 x^4 + 59 x^2 y+ 24 y^2

24 y^2 - 41 xy- 14 x^224 x^2 + 19 xy- 5 y^2

12 x^2 - 47 x- 4 12 x^2 - 19 x- 10


  • 10 x^3 + 5 x^2 + 140 x - 18 k^3 - 48 k^2 + 66 k


16 + 16 x+ 3 x^218 + 65 x+ 7 x^2

5 - 6 x+x^27 - 8 x+x^2

6 m^6 n+ 7 m^5 n^2 + 2 m^4 n^312 k^3 q^4 - 4 k^2 q^5 - kq^6

12 s^2 + 11 st- 5 t^225 a^2 + 25 ab+ 6 b^2

5 a^2 - 7 ab- 6 b^26 x^2 - 5 xy-y^2

15 x^2 y^2 - 7 xy^2 - 4 y^214 a^2 b^3 + 15 ab^3 - 9 b^3

15 n^4 - 39 n^3 + 18 n^224 a^4 + 10 a^3 - 4 a^2

40 m^2 q+mq- 6 q 15 a^2 b+ 22 ab+ 8 b

380 CHAPTER 6 Factoring and Applications


Find each product. See Section 5.6.








  1. 1 x+ 622 96. 13 t+ 422


17 p+ 3217 p- 32 13 h+ 5 k 213 h- 5 k 2

PREVIEW EXERCISES


http://www.ebook777.com
http://www.ebook777.com
Free download pdf