(d)Factor.Multiply.=m 234 Subtract like radicals. NOW TRY= 4 m 234 - 3 m 234= 2 # 2 m 234 - 3 m 234 238 m^3 = 2 m; 2327 m^3 = 3 m
= 2238 m^3 # 4 - 2327 m^3 # 4
22332 m^3 - 23108 m^3SECTION 8.3 Adding and Subtracting Radicals 515CAUTION A sum or difference of radicals can be simplified only if the radi-
cals are like radicals.= 425 223 + 5233
25 + 325 Add like 25 + 523
radicals.Unlike radicals
cannot be simplified.Complete solution available
on the Video Resources on DVD
8.3 EXERCISES
Concept Check Fill in each blank with the correct response.
1.Simplifying the expression as , is an application of
the property.
2.The radicals and are examples of like radicals because both radicals
have the same root index, , and the same radicand,.- cannot be simplified because the are different.
- cannot be simplified because the are different.
Add or subtract wherever possible. See Examples 1, 2, and 3(a).
- 42316 - 32354 36. 323250 - 423128
26 # 22 + 323 215 # 23 + 225
23 # 27 + 2221 213 # 22 + 3226
5
8
2128 -3
4
21603
5
275 -2
3
2452
3227 +
3
4248
1
42288 +
1
62725272 - 3248 - 42128 4250 - 3212 - 522009224 - 2254 + 3220 228 - 5232 + 22486218 - 4232 527 - 2228 + 6263 3211 - 3299 + 52442275 - 212 2227 - 2300 2250 - 5272322 + 250 26 + 27 214 + 217217 + 2217 219 + 3219 523 + 212622 - 822 26 + 26 211 + 211223 + 523 625 + 825 427 - 9274232 + 32222 - 223243 xy^3 - 6243 xy^3522 + 622 15 + 6222 , or 11 22NOW TRY
EXERCISE 3
Simplify. Assume that all
variables represent nonnega-
tive real numbers.
(a)
(b)
(c)
(d)
NOW TRY ANSWERS
- (a) (b)
(c)- 2 k^223 (d) 14 y 232 y^2
1222 926 x23128 y^5 + 5 y 2316 y^25 k^2212 - 4227 k^42150 x+ 2224 x27 # 214 + 522