SECTION 8.4 Rationalizing the Denominator 521
Complete solution available
on the Video Resources on DVD
8.4 EXERCISES
Rationalize each denominator. See Examples 1 and 2.
35.Concept Check To rationalize the denominator of an expression such as , we multiply
both the numerator and denominator by. By what number are we actually multiplying
the given expression, and what property of real numbers justifies the fact that our result is
equal to the given expression?
36.In Example 1(a),we showed algebraically that. Support this result numeri-
cally by finding the decimal approximation of on your calculator and then finding the
decimal approximation of. What do you notice?
Simplify. See Example 3.
- B
256
125
#
B
1
B 16
16
27
#
B
1
B 9
9
8
#
B
7
B 16
2
5
#
B
3
10
B
1
11
#
B
33
B^16
17
3
#
B
17
B^6
1
10
#
B
10
B^3
3
4
#
B
1
5
B
4
3
#
B
3
B 4
2
9
#
B
9
B 2
1
8
#
B
1
B 2
1
12
#
B
1
3
B
5
8
#
B
5
B^6
21
7
#
B
21
B^8
19
20
#
B
20
B^3
7
13
#
B
13
3
326
2
9
26
326
= 2
9
26
23
4
23
B
17
B 11
13
5
- B
1
6
- B
1
5
25
210
28
224
27
232
63
245
- 5
275 - 3
250
B
16
B^7
9
B^5
1
B^8
1
32
B
5
B 8
40
3
26
23
210
25
21
245
12
272
10
2300
6
2200
12
218
8
227
9215
622
12210
823
926
25
823
25
15
210
4
26
15
215
5
25
3
22
6
25