OBJECTIVE 2 Add and subtract complex numbers. Adding and subtracting
complex numbers is similar to adding and subtracting binomials. To add complex
numbers, add their real parts and add their imaginary parts. To subtract complex
numbers, use the definition of subtraction and add.
576 CHAPTER 9 Quadratic Equations
NOW TRY
EXERCISE 2
Add or subtract.
(a)
(b) 1 - 2 - i 2 - 11 - 3 i 2
13 + 5 i 2 + 1 - 4 - 2 i 2
NOW TRY ANSWERS
- (a)- 1 + 3 i (b)- 3 + 2 i
Adding and Subtracting Complex Numbers
Add or subtract.
(a)
Add real parts.
Add imaginary parts.
Standard form
(b)
(c)
Definition of subtraction
Properties of real numbers
Add and subtract.
(d)
Properties of real numbers
=- 5 + 2 i Subtract real parts. NOW TRY
= 1 - 1 - 42 + 2 i
1 - 1 + 2 i 2 - 4
= 6 + 5 i
= 12 + 42 + 16 - 12 i
= 12 + 6 i 2 + 14 - i 2
12 + 6 i 2 - 1 - 4 +i 2
=- 2 + 2 i
=- 2 + 13 - 12 i -i=- 1 i
3 i+ 1 - 2 - i 2
= 9 - 2 i
= 12 + 72 + 1 - 6 + 42 i
12 - 6 i 2 + 17 + 4 i 2
EXAMPLE 2
OBJECTIVE 3 Multiply complex numbers.We multiply complex numbers as
we do polynomials. Since by definition, whenever appears, we replace it
with . 1
i^2 =- 1 i^2
Multiplying Complex Numbers
Find each product.
(a)
Distributive property
Multiply.
Standard form
(b)
Use the FOIL method.
Multiply.
Combine terms;
Multiply.
= 23 + 14 i Add.
= 8 + 14 i+ 15
= 8 + 14 i- 151 - 12 i 2 =- 1
= 8 + 20 i- 6 i- 15 i^2
= 4122 + 415 i 2 + 1 - 3 i 22 + 1 - 3 i 25 i
14 - 3 i 212 + 5 i 2
= 15 + 6 i
= 6 i+ 15
= 6 i- 151 - 12 i^2 =- 1
= 6 i- 15 i^2
3 i 12 - 5 i 2
EXAMPLE 3
http://www.ebook777.com
http://www.ebook777.com