CHAPTER 9 Summary 589
Step 3 Take half the coefficient of x, square it, and add
the square to each side of the equation. Factor
the variable side and combine terms on the
other side.
Step 4 Use the square root property to solve the
equation.
Add
Factor. Add.
or
or
or
or
The solution set is e
- 2 26
2
f.
x=
- 2 - 26
2
x=
- 2 + 26
2
x=- 1 -
26
2
x=- 1 +
26
2
x+ 1 =-
26
2
x+ 1 =
26
2
x+ 1 =-
B
3
2
x+ 1 =
B
3
2
1 x+ 122 =
3
2
x^2 + 2 x+ 1 = C 21122 D^2 = 12 =1.
1
2
+ 1
9.3 Solving Quadratic Equations by the
Quadratic Formula
Quadratic Formula
The solutions of are
The discriminant of the quadratic equation is
b^2 4 ac.
x
b 2 b^2 4 ac
2 a
.
ax^2 +bx+c=0,aZ0,
Solve
Simplify.
Factor out 2.
Divide out 2.
The solution set is e.
2 210
3
f
x=
2 210
3
x=
(^2) A 2 (^210) B
2 # 3
= 2210
240 = 24 # 10
x=
4 2210
6
x=
4 240
6
c=- 2
a=3,b=-4,
x=
- 1 - 42 21 - 422 - 41321 - 22
2132
3 x^2 - 4 x- 2 =0.
CONCEPTS EXAMPLES
9.4 Complex Numbers
The imaginary unit is i, where
, and thus,
For the positive number b, 2 bi 2 b.
i 2 1 i^2 1.
2 - 19 =i 219
Addition
Add complex numbers by adding the real parts and
adding the imaginary parts.
Add.
=- 6 + 8 i
= 13 - 92 + 16 + 22 i
13 + 6 i 2 + 1 - 9 + 2 i 2
(continued)