Beginning Algebra, 11th Edition

(Marvins-Underground-K-12) #1



    1. ;;; 44. ;
      degree 2; monomial 45. ; degree 3; none of these
      46.already in descending powers; degree 5; none of these



  1. ; degree 5; trinomial 48. ;
    degree 4; trinomial 49. 50.



    1. 53.1, 4, 5, 4, 1 54.10, 1, , 1, 10















































    1. (a)Answers will vary. For example, let
      and because (b)Answers
      will vary. For example, let and
      because 70.To find the third power of a binomial, such as
      first square the binomial and then multiply that result by the
      binomial.
      71.In both cases, and lead to
      1 on each side of the inequality. This would not be sufficient to show that,
      in general,the inequality is true. It would be necessary to choose other
      values of xand y. 72. 73. , or











    1. 78.The friend




wrote the second term of the quotient as rather than Here is


the correct method. 79.































      1. 2



























































        1. (a)








(b) 108. (a) (b)


Chapter 5 Test (pages 355–356)


[5.1, 5.2]1. 2. 2 3. 4. 5. 6.



  1. (a)positive (b)positive (c)negative (d)positive (e)zero
    (f )negative [5.3]8. (a) (b)0.0000036 (c)0.00019

  2. (a) 1 103 ; 5.89 1012 (b)5.89* 1015 mi


4.5* 1010

6251 127 9 x^3 y^585 x^2 y^6

2 x^2 +x- 6 20 x^4 + 8 x^225 x^8 + 20 x^6 + 4 x^4

6 x- 2
1

49 - 28 k+ 4 k x (^4) y 12
(^802)
x- 3
10 p^2 - 3 p- 5 3 x^2 + 9 x+ 25 +
5
2



  • 4
    5 xy



  • 3 x
    2 y^2



  • y^2 - 4 y+ 4 10 r^2 + 21 r- 10 y^2 + 5 y+ 1


6 k^3 - 21 k- 6 r^134 r^2 + 20 rs+ 25 s^2
2
3 m^3

p- 3 +^5
2 p

1
812

1
144 a 16

(^62) - 1
(^3) r (^6) p 3
53
x^3 - 2 x^2 + 4 +



  • 3


2 y 4 x (^2) - 3
(^2) - 5 y+ 4 + -^5
3 y^2 + 1
4 x- 5 5 y- 10 y^2 + 2 y+ 4 100 x^4 - 10 x^2 + 1
2 a^2 + 3 a- 1 +^6 x^2 + 3 x- 4 m^2 + 4 m- 2
5 a- 3
6 x x (^2) - 2 x 2 r+ 7
(^2) - 12 x
6
=^6 x
2
6


-^12 x
6
=



  • 12 x - 2 x.

  • 2 m^2 n+mn+ 2 mn+ 3 m^4 n^2 - 4 n
    6 n^3
    5


y^3 - 2 y+ 3


  • 5 y^2
    3


4
4 px^2 + 4 px+ 3 p
4
3 px^3 +


4
x^6 + 6 x^4 + 12 x^2 + 8 3 p 1 x+ 123

a^3 + 3 a^2 b+ 3 ab^2 +b^3 x= 0 y= 1


1 a+b 23 = 1 a+b 221 a+b 2 = 1 a^2 + 2 ab+b^221 a+b 2 =

1 a+b 23 ,


27 Z9.

x= 1 y=2. 11 + 223 Z 13 + 23 ,

x= 1 y=2. 11 + 222 Z 12 + 22 , 9 Z5.


25 t^3 - 30 t^2 + 9 t

36 m^2 - 25 25 a^2 - 36 b^2 r^3 + 6 r^2 + 12 r+ 8

s^3 - 3 s^2 + 3 s- 1 a^2 + 8 a+ 16 4 r^2 + 20 rt+ 25 t^2

6 k^2 - 9 k- 6 2 a^2 + 5 ab- 3 b^212 k^2 - 32 kq- 35 q^2

5 p^5 - 2 p^4 - 3 p^3 + 25 p^2 + 15 p m^2 - 7 m- 18

a^3 - 2 a^2 - 7 a+ 2 6 r^3 + 8 r^2 - 17 r+ 6

x

y

–2

y = 3x^2 – 2


  • 2


x

y

02

5

y = –x^2 + 5

y^2 - 10 y+ 9 - 13 k^4 - 15 k^2 + 18 k

13 x^3 y^2 - 5 xy^5 + 21 x^2 a^3 + 4 a^2


  • 8 y^5 - 7 y^4 + 9 y 7 r^4 - 4 r^3 + 1


p^3 - p^2 + 4 p+ 2

1 * 10100 1 * 1032 * 1035 * 1041 * 105 22 m^2 [5.4]10. ; 2; binomial 11. 4; trinomial
12.

x

y
0

4

–4

–2 2
y = 2x^2 – 4

4, -2, -4, -2, 4


  • 7 x^2 + 8 x 4 n^4 + 13 n^3 - 10 n^2 ;


A-14 Answers to Selected Exercises


[5.1, 5.2]29. 30. 1 31. [5.3]32.about 10,800,000 km
[5.4]33.

x

y

–4 0

4

y = (x + 4)^2

2 b
a^10

5
4
34.
[5.5]35.
[5.7]36.y^2 - 2 y+ 6

63 x^2 + 57 x+ 12

11 x^3 - 14 x^2 - x+ 14

[5.6]19. 20.
[5.5]21. [5.6]22.
[5.7]23. 24. 25.

26.

Chapters 1–5 Cumulative Review Exercises
(pages 357–358)
[1.1]1. 2. 5 3. [1.6]4.$1836 5.1, 3, 5, 9, 15, 45




    1. [1.5]8. [1.7]9.associative property
      10.distributive property [1.8]11.
      [2.1–2.3]12. 13. [2.5]14. [2.6]15.
      [2.1–2.3]16. 17. 18.
      [2.4]19.exertion: 9443 calories; regulating body temperature:
      1757 calories [2.8]20.11 ft and 22 ft 21. 22.
      [3.2]23.




x

y

2

6

0

y = –3x + 6

A-q, -^145 B^3 - 4, 2^2

5 - 126 5206 5 all real numbers 6

r=d 5 - 56
t
E^134 F^0


  • 10 x^2 + 21 x- 29

  • 8 12 - 4


(^743114) yd 3
3 x^2 + 6 x+ 11 +^26
x- 2
4 y^2 - 3 y+ 2 + - 3 xy^2 + 2 x^3 y^2 + 4 y^2 x- 2
5
y
2 r^3 +r^2 - 16 r+ 15 12 x+36; 9 x^2 + 54 x+ 81
25 x^2 - 20 xy+ 4 y^2100 v^2 - 9 w^2
13.
14.
15.
[5.5]16.
17.t^2 - 5 t- 24 18. 8 x^2 + 2 xy- 3 y^2



  • 27 x^5 + 18 x^4 - 6 x^3 + 3 x^2

  • 12 t^2 + 5 t+ 8

  • 21 a^3 b^2 + 7 ab^5 - 5 a^2 b^2

  • 2 y^2 - 9 y+ 17


[3.3, 3.4]24. (a) 1 (b)
[3.5]25.no [3.6]26.
[4.2]27.
[4.3]28. 51 4, - 526

51 - 3, - 126


  • 1


y=x+ 6

FACTORING AND APPLICATIONS

Section 6.1 (pages 365–367)


  1. 4 3. 6 5. 1 7. 8 9. 11. 13. 15.factored
    17.not factored 19. 21. 23. 25.



    1. 31.First, verify that you have factored com-
      pletely. Then multiply the factors. The product should be the original
      polynomial. 33. 35. 37.







      1. 45.in factored form 47. 49.















      1. 61.not in factored form; 63.in factored form
        65.not in factored form 67.The quantities in parentheses are not the
        same, so there is no common factor of the two terms
        and. 71 y- 42 69. 1 p+ 421 p+q 2 71. 1 a- 221 a+b 2






18 x^21 y+ 42

17 t+ 4218 +x 2

1 x+ 221 c-d 2 1 m+ 2 n 21 m+n 2 1 p- 421 q^2 + 12

9 p^3 q 14 p^3 + 5 p^2 q^3 + 9 q 2 a^31 a^2 + 2 b^2 - 3 a^2 b^2 + 4 ab^32

8 mn^311 + 3 m 2 13 y^21 y^6 + 2 y^2 - 32

8 z^212 z^2 + 32 6 x^212 x+ 12 5 y^6113 y^4 + 72

x 1 x- 42 3 t 12 t+ 52 9 m 13 m^2 - 12

a- 2 2 + 3 xy

3 m^22 z^42 mn^4 y+ 2

10 x^3 xy^26 m^3 n^2

6

http://www.ebook777.com
http://www.ebook777.com
Free download pdf