- ; Only 16 ft is a reasonable answer. 59.
Summary Exercises on Quadratic Equations
(pages 573–574)
Section 9.4 (pages 579–580)
- 3 i 3. 5. 7. 9. 11.
- 45 31.
- 61.true
63.false; For example, is a complex number but it is not real.
- 16
Section 9.5 (pages 585–587)
x
y
6
3
–3 01
y = x^2 + 2x + 3
x
y
9
4
–6–3 0
y = (x + 3)^2
x
y
–3 0 3
3
–6
y = x^2 – 6
1 0, - 62 1 - 3, 0 2 1 - 1, 2 2
xx
yy
00
33
22 x x – 3– 3y y = 6= 6
–2–2
3 + 2 i
e^1
2
^211
2
e-^1 if
2
^213
2
if
e
1
5
214
e 5 if
3
2
27
e- 2 if
3
4
231
4 if
5 - 1 2 i 6 E 3 i 25 F E- 32 i 22 F 51 i 6
1
2 +
2
- 2 + 5 i 3 - i 3 i
3
25 +
4
2 - 6 i 25 i
1
2 +
1
6 + 8 i 14 + 5 i 7 - 22 i 2 i
- 6 + 2 i - 8 + 6 i 6 - 7 i - 2 - 6
2 i 25 3 i 22 5 i 25 5 + 3 i 6 - 9 i
E-^14 ,^23 F E-4, 53 F^5 - 3, 5^6 E-^23 ,^25 F E^109 F
e E-^83 , - 56 F (^00) E-^23 , 2F
8 822
3
f
e-^5 ^25
2
e-^7 ^25 f
4
e-^5 ^241 f
8
f
e
- 2 211
3
e f
1 23
2
E^14 , 1F f
e E-^54 F
- 3 241
2
E^25 , 4F E- 3 25 F f
e-^5 ^213
6
E-^54 , 23 F E-3,^13 F E^1 ^22 F f
e 0 0 E-^12 , 2F E- 21 , 1F
1 422
7 f
e^7 ^226
3
e^1 ^2105 - 17, 5 (^6) E- 57 , 1F f
2
f
e E-^13 ,^53 F
- 3 217
2
5 - 2, - 16 5 4, 5 6 f
e-^3 ^255 - 4, 6 (^6) E (^79) F 5 1, 3 6
2
5 66 f
- 2 + 3 k 24 - 2 r- 15 r^2
5 16, - 86 - 5 + 8 z 7. 9. 11.
13.one real solution; 15.two real solutions; 17.no real
solutions; 19.If , it opens upward, and if , it opens
downward. 21. In Exercises 23–27, we give the domain first,
and then the range. 23. ; 25. ;
- ; 29. 3 31. 21 33.40 and 40 35.
37.In each case, there is a vertical “stretch” of the parabola. It becomes
narrower as the coefficient gets larger. 38.In each case, there is a
vertical “shrink” of the parabola. It becomes wider as the coefficient gets
smaller. 39.The graph of is obtained by reflecting the graph of
across the x-axis. 40.When the coefficient of is negative, the
parabola opens downward. 41.By adding a positive constant k, the graph
is shifted kunits upward. By subtracting a positive constant k, the graph
is shifted kunits downward. 42.Adding a positive constant kbefore
squaring moves the graph kunits to the left. Subtracting a positive
constant kbefore squaring moves the graph kunits to the right.
Chapter 9 Review Exercises (pages 591–593)
- 15.2.5 sec 16.6, 8, 10 17. , or
- (a) (b) (c) (d)Because there is only one
solution set, we will always get the same results, no matter which method
of solution is used. 19. 20. 21.
- 25.There are no real solutions. 26. 27. 28. 20
- 13 30.i 31. 32.a(the real number itself )
33.No, the product will always be the
sum of the squares of two real numbers, which is a real number.
- 39.e-^1
9
^222
9
e^3 if
8
^223
8
e-^3 if
2
^223
2
if
- 39.e-^1
e^1
3
^22
3
e^2 if
3
^222
3
E-^2 i^23 F^ if
1 a+bi 21 a-bi 2 =a^2 +b^2
28
13 -
3
13 i
5 - i - 6 - 5 i
e E-^23 , 1F
- 3 241
e 2 f - 1 229
4 f
e
2 210
E 1 25 F 0 2 f
5 36 5 36 5 36
9
A 4
3
2 B
E-^202
5 , 1F
e
- 4 222
2
E- 2 211 F E- 1 26 F f
e 5 - 5, - 16
3 222
e 0 5 f
- 1 214
2 f
5 126 E 237 F E 822 F 5 - 7, 3 6 E 3 210 F
Y 1 x^2
Y 2
1 - q, q 23 1, q 2 y= 562511 x^2
1 - q, q 23 0, q 2 1 - q, q 21 - q, 4 4
5 - 2, 3 6
0 a 70 a 60
526 5 26
x
y
0
4
–4
–4 4
y = x^2 + 4x
x
y
0
4
–5
36
x y = –x (^2) + 6x – 5
y
0
4
9
48
y = x^2 – 8x + 16
1 4, 0 2 1 3, 4 2 1 - 2, - 42
Answers to Selected Exercises A-23
40.
x
y
–6
–2 2
y = –3x^2
1 0, 0 2 41.
x
y
–2 02
5
–4
y = –x^2 + 5
1 0, 5 2 42.
x
9 y
4
y = (x–4 + 4)^20
1 - 4, 0 2