Solve each system by elimination. If the system is inconsistent or has dependent equations,
say so. See Examples 6 – 9.
SECTION 4.1 Systems of Linear Equations in Two Variables 221
41.
2 x- 5 y= 24
- 2 x+ 3 y=- 16 42.
- 6 x- 11 y= 1
6 x+ 5 y=- 7 43.
3 x+ y= 8
2 x- 5 y= 11
44.
- 4 x+ y=- 3
- 2 x+ 3 y= 1 45.
5 x+ 3 y= 1
3 x+ 4 y=- 6 46.
3 x+ 2 y= 2
4 x+ 3 y= 1
47.
- 14 x- 4 y=- 12
7 x+ 2 y= 6 48.
4 x- 16 y= 8
x- 4 y= 2 49.
4 x+ 2 y= 3
3 x+ 3 y= 0
50.
4 x- 2 y= 2
8 x+ 4 y= 0 51.
x- y= 12
5 x- 5 y= 3 52.
- 4 x+ 6 y= 14
2 x- 3 y= 7
53.
2 x- 2 y= 0
x+ y= 0 54.
- 2 x- y= 0
3 x+ 3 y= 0 55.
- x+
2
5
y=-
8
5
x-
1
2
y= 2
56.
2
3
x+
1
3
y= 1
3
2
x+ y= 3 57.
1
2
x+ 2 y=
4
3
1
2
x+
1
3
y=
49
18
58.
1
10
x+
1
3
y=
5
6
1
5
x+
1
7
y=
12
5
Write each equation in slope-intercept form and then tell how many solutions the system has.
Do not actually solve. See Example 10.
- 6 x+ 14 y= 3
3 x+ 7 y= 4 60.
4 x- 8 y= 1
- x+ 2 y= 8
61.
6 x=- 9 y+ 3
2 x=- 3 y+ 1 62.
10 x=- 4 y+ 2
5 x=- 2 y+ 1
Solve each system by the method of your choice. See Examples 3 – 9.( For Exercises 63 – 65,
see your answers to Exercise 40.)
- x-y=- 5
3 x+y=- 7 64.
y= 11 x
6 x-y= 5 65.
9 x+ 8 y= 7
3 x- 2 y= 0
66.
2 x+ 3 y= 30
3 x- 5 y= 7 67.
- 3 x+ y= 18
2 x+ 3 y= 10
68.
1
4
x+
1
2
y= 12
1
6
x+
1
3
y= 8 69.
4 x- y=- 2
1
2
x-
1
8
y=-
1
4
70.
0.4x+ y= 9
0.2x+0.5y= 6 71.
0.5x+0.4y=0.7
0.3x+0.2y=0.4
72.Explain why the system would be more difficult to solve by substitution
8 x- 5 y= 4
3 x+ 7 y= 19
than.
3 x- 2 y= 4
x+ 7 y= 8