Intermediate Algebra (11th edition)

(Marvins-Underground-K-12) #1

Solve each system by elimination. If the system is inconsistent or has dependent equations,
say so. See Examples 6 – 9.


SECTION 4.1 Systems of Linear Equations in Two Variables 221


41.


2 x- 5 y= 24


  • 2 x+ 3 y=- 16 42.

    • 6 x- 11 y= 1




6 x+ 5 y=- 7 43.
3 x+ y= 8

2 x- 5 y= 11

44.



  • 4 x+ y=- 3

  • 2 x+ 3 y= 1 45.
    5 x+ 3 y= 1


3 x+ 4 y=- 6 46.
3 x+ 2 y= 2

4 x+ 3 y= 1

47.



  • 14 x- 4 y=- 12


7 x+ 2 y= 6 48.
4 x- 16 y= 8

x- 4 y= 2 49.
4 x+ 2 y= 3

3 x+ 3 y= 0

50.


4 x- 2 y= 2

8 x+ 4 y= 0 51.
x- y= 12

5 x- 5 y= 3 52.


  • 4 x+ 6 y= 14


2 x- 3 y= 7

53.


2 x- 2 y= 0

x+ y= 0 54.


  • 2 x- y= 0


3 x+ 3 y= 0 55.


  • x+


2


5


y=-

8


5


x-

1


2


y= 2

56.


2


3


x+

1


3


y= 1

3


2


x+ y= 3 57.

1
2

x+ 2 y=

4


3


1


2


x+

1


3


y=

49


18


58.


1


10


x+

1


3


y=

5


6


1


5


x+

1


7


y=

12


5


Write each equation in slope-intercept form and then tell how many solutions the system has.
Do not actually solve. See Example 10.



  1. 6 x+ 14 y= 3


3 x+ 7 y= 4 60.
4 x- 8 y= 1


  • x+ 2 y= 8


61.


6 x=- 9 y+ 3

2 x=- 3 y+ 1 62.
10 x=- 4 y+ 2

5 x=- 2 y+ 1

Solve each system by the method of your choice. See Examples 3 – 9.( For Exercises 63 – 65,
see your answers to Exercise 40.)



  1. x-y=- 5


3 x+y=- 7 64.
y= 11 x

6 x-y= 5 65.
9 x+ 8 y= 7

3 x- 2 y= 0

66.


2 x+ 3 y= 30

3 x- 5 y= 7 67.


  • 3 x+ y= 18


2 x+ 3 y= 10

68.


1


4


x+

1


2


y= 12

1


6


x+

1


3


y= 8 69.

4 x- y=- 2

1


2


x-

1


8


y=-

1


4


70.


0.4x+ y= 9

0.2x+0.5y= 6 71.
0.5x+0.4y=0.7

0.3x+0.2y=0.4

72.Explain why the system would be more difficult to solve by substitution
8 x- 5 y= 4


3 x+ 7 y= 19

than.
3 x- 2 y= 4

x+ 7 y= 8
Free download pdf