OBJECTIVE 5 Simplify exponential expressions.
270 CHAPTER 5 Exponents, Polynomials, and Polynomial Functions
Using the Definitions and Rules for Exponents
Simplify each exponential expression so that no negative exponents appear in the
final result. Assume that all variables represent nonzero real numbers.
(a)
Product rule
Add exponents.
or a-n=a^1 n
1
27
=
1
33
,
= 3 -^3
= 32 +^1 -^52
32 # 3 -^5
EXAMPLE 8
(b)
Product rule
Add exponents.
= a-n=a^1 n
1
x^5
= x-^5
= x-^3 +^1 -^42 +^2
x-^3 #x-^4 #x^2
(c)
Power rule (a)
= 410 Multiply exponents.
= 41 -^221 -^52
14 -^22 -^5 (d)
Power rule (a)
Multiply exponents.
= a-n=a^1 n
1
x^24
=x-^24
=x^1 -^426
1 x-^426
(e)
Quotient rule
= a-n=a^1 n
y^7
x^6
= x-^6 y^7
= x-^4 -^2 #y^2 -^1 -^52
=
x-^4
x^2
y
2
y-^5
x-^4 y^2
x^2 y-^5
(f )
Power
rule (b)
or a-n=a^1 n
x^4
64
=
x^4
26
,
= 2 -^6 x^4
= 1232 -^2 # 1 x-^22 -^2
123 x-^22 -^2
(g)
Power rule (a)
Quotient rule
= a-n=a^1 n
9 x
4 y^4
=
9
4
x^1 y-^4
=
9
4
x^4 -^3 y-^2 -^2
=
9 x^4
y^2
#y
- 2
4 x^3
=
321 x^222
y^2
#y
- 2
4 x^3
a
3 x^2
y
b
2
a
4 x^3
y-^2
b
- 1
Combination
of rules
(h)
= 1 - 622 = 36
36
m^8 n^22
bm
=an
a-n
= b-m
1 - 622
m^8 n^22
=
m-^8 n-^22
1 - 62 -^2
=
1 m^42 -^21 n^112 -^2
1 - 62 -^2
= a
m^4 n^11
- 6
b
- 2
= a
m^5 -^1 n^4 - (-7)
- 6
b
- 2
a
- 4 m^5 n^4
24 mn-^7
b
- 2
Quotient
rule; divide
coefficients.
Subtract
exponents.
Power
rules (b)
and (c)
Power
rule (a)
The sign on
does notchange
in this step.
- 6
NOW TRY
NOW TRY
EXERCISE 8
Simplify. Assume that all
variables represent nonzero
real numbers.
(a)
(b)
(c)
(d) a
2 x^2
y^2
b
3
a
- 5 x-^2
y
b
- 2
p^2 q-^4
p-^2 q-^1
15 -^322
x-^8 #x#x^4
NOW TRY ANSWERS
- (a) (b)
(c) (d)
8 x^10
25 y^4
p^4
q^3
1
56
1
x^3
Subtract
exponents.