Intermediate Algebra (11th edition)

(Marvins-Underground-K-12) #1

(b)


Quotient rule
3
2 -

2
3 =

9
6 -

4
6 =

5

= x 6


5/6

= x3/2-2/3


=


x3/2


x2/3


2 x^3


23 x^2


SECTION 8.2 Rational Exponents 441


Convert to rational
exponents.

(c)


= z1/8 Power rule


= 1 z1/4 2 1/2


= 2 z1/4


324 z


Convert the inside
radical to rational
exponents.
Convert to rational
exponents.

NOW TRY

NOW TRY
EXERCISE 6
Write all radicals as exponen-
tials, and then apply the rules
for rational exponents. Leave
answers in exponential form.
Assume that all variables rep-
resent positive real numbers.


(a) (b)


(c)


NOW TRY ANSWERS



  1. (a) (b) (c)y1/6
    1
    y7/4


y14 /15

323 y

24 y^3
2 y^5

25 y^3 # 23 y


Complete solution available
on the Video Resources on DVD


8.2 EXERCISES


Concept Check Match each expression from Column I with the equivalent choice from
Column II.
I

































II


A. B. 8


C. D.


E. F.


G. 4 H.


I. 6 J.Not a real number

- 2


- 3 26


23 - 26


- 4


- 6 2/4 36 0.5


4 3/2 6 2/4


1 - 322 1/5 1 - 322 2/5


- 16 1/2 1 - 252 1/2


3 1/2 1 - 272 1/3


Evaluate each exponential. See Examples 1–3.





































































































Write with radicals. Assume that all variables represent positive real numbers. See Example 4.











































Simplify by first converting to rational exponents. Assume that all variables represent positive
real numbers. See Example 4.





















56. 57. 58. 59. 60.


24 w^3
26 w

23 t^4
25 t^4

2 r^5023 x# 2 x 24 y# 25 y^2


2212 2510 2349 2468 2 x^20

1 r+ 2 z 2 3/2 13 m^4 + 2 k^22 - 2/3 15 x^2 + 3 z^32 - 5/6

12 m 2 - 3/2 15 y 2 - 3/5 12 y+x 2 2/3

7 2/3 19 q 2 5/8- 12 x 2 2/3 13 p 2 3/4+ 14 x 2 1/3

10 1/2 3 1/2 8 3/4


a

729


64


b


  • 5/6
    a


16


81


b


  • 3/4
    a


64


125


b


  • 2/3
    a


125


27


b


  • 2/3


32 - 3/5 27 - 4/3 64 - 3/2 81 - 3/2


- 16 5/2 - 32 3/5 1 - 82 4/3 1 - 2432 2/5


100 3/2 64 3/2 81 3/4 216 2/3


1 - 272 1/3 1 - 322 1/5 1 - 1442 1/2 1 - 362 1/2


a

8


27


b

1/3
a

64


81


b

1/2
16 1/4 625 1/4

169 1/2 121 1/2 729 1/3 512 1/3


NOTE The ability to convert between radicals and rational exponents is important


in the study of exponential and logarithmic functions in Chapter 10.

Free download pdf