EXERCISES 33–38
FOR INDIVIDUAL OR GROUP WORK
We can show a connection between dividing one polynomial by another and factoring
the first polynomial. Let Work Exercises 33–38 in order.
33.Factor 34.Solve
35.Evaluate. 36.Evaluate
37.Complete the following sentence: If then is a factor of
38.Use the conclusion reached in Exercise 37to decide whether is a factor of
Q 1 x 2 = 3 x^3 - 4 x^2 - 17 x+6.Factor completely.Q 1 x 2
x- 3
P 1 a 2 =0, x- P 1 x 2.
P 1 - 42 PA 23 B.
P 1 x 2. P 1 x 2 =0.
P 1 x 2 = 2 x^2 + 5 x-12.
RELATING CONCEPTS
726 APPENDIX B Synthetic Division
EXERCISES
Use synthetic division to find each quotient. See Examples 1 and 2.
4. 5. 6.
7. 8.
9. 10.
11.
12.
13.
14.
15.
16.
Use the remainder theorem to find See Example 3.
- 23.Explain why a 0 remainder in synthetic division of by indicates that kis a solu-
tion of the equation
24.Explain why it is important to insert 0s as placeholders for missing terms before perform-
ing synthetic division.
- 23.Explain why a 0 remainder in synthetic division of by indicates that kis a solu-
Use synthetic division to decide whether the given number is a solution of the equation. See
Example 4.
32.x^4 - x^3 - 6 x^2 + 5 x+ 10 =0; x=- 2
x^4 + 2 x^3 - 3 x^2 + 8 x- 8 =0; x=- 2
2 x^3 - x^2 - 13 x+ 24 =0; x=- 3 5 x^3 + 22 x^2 +x- 28 =0; x=- 4
3 x^3 + 2 x^2 - 2 x+ 11 =0; x=- 2 3 x^3 + 10 x^2 + 3 x- 9 =0; x=- 2
x^3 - 2 x^2 - 3 x+ 10 =0; x=- 2 x^3 - 3 x^2 - x+ 10 =0; x=- 2
P 1 x 2 =0.
P 1 x 2 x-k
P 1 x 2 = 2 x^3 - 4 x^2 + 5 x-33; k= 3 P 1 x 2 =x^3 - 3 x^2 + 4 x-4; k= 2
P 1 x 2 =-x^3 - 5 x^2 - 4 x-2; k=- 4 P 1 x 2 =-x^3 + 5 x^2 - 3 x+4; k= 3
P 1 x 2 = 2 x^3 - 4 x^2 + 5 x-3; k= 2 P 1 x 2 =x^3 + 3 x^2 - x+5; k=- 1
P 1 k 2.
1 m^6 + 2 m^4 - 5 m+ 112 , 1 m- 22
1 - 3 y^5 + 2 y^4 - 5 y^3 - 6 y^2 - 12 , 1 y+ 22
12 t^6 - 3 t^5 + 2 t^4 - 5 t^3 + 6 t^2 - 3 t- 22 , 1 t- 22
1 - 4 r^6 - 3 r^5 - 3 r^4 + 5 r^3 - 6 r^2 + 3 r+ 32 , 1 r- 12
12 y^5 - 5 y^4 - 3 y^2 - 6 y- 232 , 1 y- 32
1 x^5 - 2 x^3 + 3 x^2 - 4 x- 22 , 1 x- 22
5 p^3 - 6 p^2 + 3 p+ 14
p+ 1
4 a^3 - 3 a^2 + 2 a- 3
a- 1
1 p^2 - 3 p+ 52 , 1 p+ 12 1 z^2 + 4 z- 62 , 1 z- 52
4 y^2 - 5 y- 20
y- 4
2 a^2 + 8 a+ 13
a+ 2
3 x^2 - 5 x- 12
x- 3
4 m^2 + 19 m- 5
m+ 5
x^2 - 4 x- 21
x+ 3
x^2 - 6 x+ 5
x- 1