- 111.Each expression is approximately
equal to 0.2588190451. 113. 115.
Summary Exercises on Operations with Radicals and
Rational Exponents (pages 466 – 467)
- or 31. 32.
- (a) 8 (b) 34. (a) 10 (b)
- (a) (b) 36. (a) (b)
- (a) (b) 38. (a) (b)
- (a) (b)0.2 40. (a) (b)0.3
Section 8.6 (pages 472– 474)
- (a)yes (b)no 3. (a)yes (b)no 5.No. There is no solution.
The radical expression, which is positive, cannot equal a negative number.
- 35.It is incorrect to just square each term. The right side should be
The correct first step is
and the solution set is 37. 39.
Section 8.7 (pages 479– 481)
1.i 3. 5. 7. 13 i 9. 11. 13.
- 5 i 25.
27.Any real number acan be written as a complex number with
imaginary part 0. 29.- 1 + 7 i 31. 0 33. 7 + 3 i 35.- 2
a+ 0 i,
2105 - 10 i 233 23 - 2
- 1 - i - 12 i i 25 4 i 23
(^7) A 5 + (^22) B
23
1 +x 2 x^2 +x- 15
r=
a
4 p^2 N^2
M=
r^2 F
m
K=
V^2 m
2
L=CZ^2
5 4, 20 6 0 E 45 F 5 9, 17 6 E^14 , 1F
5146 586 506 0 576 576
64 - 16 x+x^2 , 546. 516 5 - 16
18 - x 22 = 64 - 16 x+x^2. 3 x+ 4 =
5176 556 0 506 506 0 516
(^5116) E 31 F 0 556 5186 556 546
5 - 0.2, 0.2 6 5 - 0.3, 0.3 6
119 E- 119 , 119 F - 107 E- 107 , 107 F
5 - 4, 4 6 - 4 5 - 5, 5 6 - 5
5 - 8, 8 6 5 - 10, 10 6
7 + 4 # 3 1/2, 7 + 423 3232 x^2 - 2
1
25 x^2
- 423 - 3 xy6/5 x^10 y
x 23 x^2
y
1 + 233 + 239
322 + 215 + 242 + (^23522427) - 2
23117
9
11 + 2230 - 323 x 52 - 3023
- 23100
22
8
8
5
215 x
5 x
3 A 25 - 2 B
2 abc^323 b^25233
2 x+ 25
x- 5
- 44
4 A 27 - 25 B - 3 + 222
- 26
2
73 + 12235 - 6210 7 - 214 2 + 26 - 223 - 322 422
E^38 F E- 31 , 23 F
4 x-y
3 xA 22 x + 2 y B
33
8 A 6 + 23 B
p 2 p+ 2
p+ 2
32 x+y
x+y
6 + 226 p
3
4 - 222
3
3 - 226 1 - 25
- 153 57. 97 59. 4 61. 63. 65.
- 77.i 79. 81. 83. 85.Since
the student multiplied by 1, which is justified by the identity property for
multiplication. 87. 89.Substitute both and
for x, and show that the result is in each case. 91.
- 77.i 79. 81. 83. 85.Since
Chapter 8 Review Exercises (pages 487– 490)
- 42 2. 3. 6 4. 5. 6. 7. is not a real
number if nis even and ais negative. 8.(a) (b) (c)x
- 11.4.960 12.0.009 13.
14.-0.189
- 6.856 -5.053 -3968.503
- 11.4.960 12.0.009 13.
|x| -|x|
17 - 5 - 3 - 2 2 na
1013 + 1011 i E-^136 F 5 - 8, 5 (^6) E- 52 , 1F
37
10 -
19
0 = 0 10 i
(^12) + 21 i 1 + 5 i 1 - 5 i
1 - i -i i^20 = 1 i^425 = 15 =1,
1 + 2 i - 135 - 1312 i 1 - 3 i 1 + 3 i - 1
a-bi 1 +i 2 + 2 i
- 10 - 30 i 10 - 5 i - 9 + 40 i - 16 + 30 i
1 + 13 i 6 + 6 i 4 + 2 i - 81 - 16
Answers to Selected Exercises A-19
15.
domain: ;
range:
16.
domain: ;
range: 1 - q, q 2
1 - q, q 2
x
y
–1 1 8
2
6
–8
f(x) =^3 √x + 4
3 0, q 2
3 1, q 2
x
y
01 5
2
f(x) = √x – 1
17.B 18.cube (third); 8; 2; second; 4; 4 19.A 20. (a)mmust be
even. (b)mmust be odd. 21.no 22. 7 23. 24. 32
- 29.It is not a real number.
- ; 31.The radical is equivalent to
For example, and
- or 34.
- 96 38. 39. 40.
- 51.The product rule for ex-
ponents applies only if the bases are the same. 52. 53.
- 51.The product rule for ex-
- 10 73.
- 2 84. 85. 86. 29
- 89.The denominator would become which is not rational.
- 526 102. 566 103. 0
- 6 + 23
2
1 - 422
3
1 - 25
4
(^5) A 26 + (^3) B
3
22 - 27
- 5
3 m 234 n
n^2
- 2345
5
222
4
327 py
y
- 326
230
5
2362 = 2336 ,
2232 y^2 + 2234 y- 3 4.801960973Z66.28725368
1 - 23 9 - 722 15 - 2226
- 8242 A 1622 + 2423 B ft A 1223 + 522 B ft
- 1122 2325 723 y 26 m 26 m 19232
215 p 2 p 2122000 210 x^72197
a^224 a
3
23 r^2
2
m^5
3
y 2 y
12
2 r^2 t 2379 r^2 t
- 3234 10 y^32 y 4 pq^223 p 3 a^2 b 234 a^2 b^2
2330 2421 225 523 - 525
266 25 r
z1/12 x1/8 x1/15 x1/36
r1/2+r s1/2 r3/2 p1/2 k9/4 m13/3
z1/2x8/5
4
1
y1/2
p4/5 52 , or 25 a2/3
7 9/2
1
2313 a+b 25
1
A^233 a+bB
5
2 m+ 3 n^ ,
2382 = 2364 =4, 8 2/3= 18 1/3 22 = 22 =4.
A 238 B 2382 2 nam am/n.
2
1000
- (^3227)
216
- (^3227)
(^4125)
11