[10.2]37. 38.
[10.3]39. [10.6]40.
[9.5]41. [11.2]42.
[11.3]43. [11.4]44.
[11.2]45. [12.1]46. 3, 8, 13
[12.2, 12.3]47. (a) 78 (b) [12.2]48. 30
[12.4]49. 50.-
45 x^8 y^6
4
32 a^5 - 80 a^4 + 80 a^3 - 40 a^2 + 10 a- 1
75
7
1 x+ 522 + 1 y- 1222 = 81 - 7,-2,
E^1 - 1, 5^2 , A^52 , -^2 BF
x
y
–3 3
3
–3
x^2 – y^2 = 9
0
x
y
(^03)
5
x^2
9
y^2
+= 1 25
–3
5
0 2
y
x
f(x) = 2(x – 2)^2 – 3
526
x
y
–2
(^241220)
y = log1/3x
E^52 F
x
y
0
4
8
12
16
–2 2
g(x) = ()^13 x APPENDIX A
Appendix A (pages 721–722)
- (a)true (b)true (c)false; The determinant equals
(d)true 3. 5. 14 7. 0 9. 59 11. 14 13. 16
- 0 19. 21. 23.
- 29.Cramer’s rule does not apply.
APPENDIX B
Appendix B (page 726)
13.
- 7 19.
- 0 23.By the remainder theorem, a 0 remainder means that
That is, kis a number that makes 25.yes 27.no 29.yes
31.no 33. 34. 35. 0 36. 0 37.
38.Yes, x- 3 is a factor. Q 1 x 2 = 1 x- 3213 x- 121 x+ 22
12 x- 321 x+ 42 E-4, 23 F a
P 1 x 2 =0.
P 1 k 2 =0.
- 3 y^4 + 8 y^3 - 21 y^2 + 36 y- 72 +^143 - 2
y+ 2
7 r^4 - 10 r^3 - 5 r^2 - 11 r- 8 +
- 5
r- 1 - 4 r^5 -
x^4 + 2 x^3 + 2 x^2 + 7 x+ 10 +
18
x- 2
4 a^2 +a+ 3
p- 4 +
9
p+ 1
2 a+ 4 +
5
a+ 2
x- 5 4 m- 1
51 - 2, 1, 3 (^26) EA^499 , -^1559 ,^1369 BF 526 506
51 - 1, 2 26 51 4, -3, 2 26
12 51 1, 0, - 126 51 - 3, 6 (^26) EA 1753 , 176 BF
3
ad-bc.