Geometry with Trigonometry

(Marvins-Underground-K-12) #1

96 Cartesian coordinates; applications Ch. 6


ThusZdivides(Z 1 ,Z 2 )in the ratio|λ|:1.
Changing our notation slightly, if we denote byZ 3 ≡(x 3 ,y 3 )the point with


x 3 =x 1 +

λ
1 +λ

(x 2 −x 1 )=

1


1 +λ

x 1 +

λ
1 +λ

x 2 ,

y 3 =y 1 +

λ
1 +λ

(y 2 −y 1 )=

1


1 +λ

y 1 +

λ
1 +λ

y 2 ,

thenZ 3 divides(Z 1 ,Z 2 )in the ratio|λ|: 1. Consequently if we denote byZ 4 ≡(x 4 ,y 4 )
the point with


x 4 =

1


1 +λ′

x 1 +

λ′
1 +λ′

x 2 ,y 4 =

1


1 +λ′

y 1 +

λ′
1 +λ′

y 2 ,

whereλ′=−λ,sothat


x 4 =

1


1 −λ

x 1 −

λ
1 −λ

,y 4 =

1


1 −λ

y 1 −

λ
1 −λ

y 2 ,

thenZ 4 also divides(Z 1 ,Z 2 )in the ratio|−λ|:1=|λ|:1.
Nowλ= 1 −ttand if we write−λ= 1 −sswe haveZ 4 in the original format,


x 4 =x 1 +s(x 2 −x 1 ),y 4 =y 1 +s(y 2 −y 1 ).

Then t


1 −t

=−


s
1 −s
so that


s=

1
2 t
t−^12

.


Thus


s−^12 =

1
2 t
t−^12


1


2


=


1
2 t−

1
2 t+

1
4
t−^12

=^14


1


t−^12

.


Hence (
s−^12


)(


t−^12

)


=^14 ,


∣∣


(s−^12 )(t−^12 )

∣∣


=^14. (6.7.1)


Then we have three possibilities,


(a)

∣∣


t−^12

∣∣


<^12 ,


∣∣


s−^12

∣∣


>^12 ,


(b)

∣∣


s−^12

∣∣


<^12 ,


∣∣


t−^12

∣∣


>^12 ,


(c)


∣s−^12


∣=^12 ,



∣t−^12


∣=^12.


In (a) we have−^12 <t−^12 <^12 and eithers−^12 <−^12 ors−^12 >^12. Hence 0<t< 1
and eithers<0ors>1. It follows thatZ 3 ∈[Z 1 ,Z 2 ],Z 4 ∈[Z 1 ,Z 2 ].
The situation in (b) is like that in (a) with the roles oftands, and so ofZ 3 andZ 4
interchanged.

Free download pdf