Sec. 9.5 The cosine and sine rules 141
A
B
C
D
Figure 9.12.A
B
C D
A
B
D C
The cosine rule.In each triangle[A,B,C],cosα=b^2 +c^2 −a^2
2 bc,cosβ=c^2 +a^2 −b^2
2 ca,cosγ=a^2 +b^2 −c^2
2 ab
ProofOn returning to the last proof, we note that whenD∈[B,Cwe havecosβ=|B,D|
|B,A|
=
x
c,
while
x=c^2 +a^2 −b^2
2 a,
and so
cosβ=c^2 +a^2 −b^2
2 caSimilarly, whenB∈[D,C]we have
cosβ=−|B,D|
|B,A|
=−
x
c,
while
x=−c(^2) +a (^2) −b 2
2 a
,
and this gives the same conclusion.
9.5.2 Thesinerule..............................
The sine ruleIn each triangle[A,B,C],
sinα
a=
sinβ
b=
sinγ
c.
Proof. By the cosine rulecos^2 α
a^2=
1 −sin^2 α
a^2=
(b^2 +c^2 −a^2 )^2
4 a^2 b^2 c^2