Sec. 9.6 Cosine and sine of angles equal in magnitude 143
Proof. By the last result we haved 2 =c^2 +caacos^12 β,d 3 =a^2 +abbcos^12 γ.Thend^22 −d 32 = 4 a^2[
c^2
(c+a)^2cos^21
2
β−b^2
(a+b)^2cos^21
2
γ]
= 2 a^2[
c^2
(c+a)^2( 1 +cosβ)−b^2
(a+b)^2( 1 +cosγ)]
= 2 a^2[
c^2
(c+a)^2(
1 +
c^2 +a^2 −b^2
2 ca)
−
b^2
(a+b)^2(
1 +
a^2 +b^2 −c^2
2 ab)]
=a[
c−b+bc^2
(a+b)^2−
b^2 c
(c+a)^2]
=a[
c−b+bc
(a+b)^2 (c+a)^2[c(c+a)^2 −b(a+b)^2 ]]
=a(c−b)[
1 +
bc
(a+b)^2 (c+a)^2[a^2 +b^2 +c^2 + 2 ab+bc+ 2 ca]]
Thenb<cimplies thatd 2 >d 3.
9.6 COSINE AND SINE OF ANGLES EQUAL IN MAG-
NITUDE
9.6.1 .....................................
If anglesα,βare such that|α|◦=|β|◦,thencosα=cosβandsinα=sinβ. Con-
versely ifcosα=cosβandsinα=sinβ,then|α|◦=|β|◦unless one of them is null
and the other is full.
Proof.LetF=([O,I,[O,J)andαhave support|QOPand indicator inH 1 ,
where|O,P|=|O,Q|=k.LetF′=([O′,I′,[O′,J′)andβhave support|Q′O′P′
and indicator inH 1 ′,where|O′,P′|=|O′,Q′|=k.
O IJ
P
Q
H 1
H 2
H 4 H 3
O′
J I′
′P′
Q′
Figure 9.14.