Geometry with Trigonometry

(Marvins-Underground-K-12) #1

Sec. 10.9 Some results on circles 165


10.9.2 A sufficient condition to lie on a circle ...............


Let Z 1 ,Z 2 be fixed distinct points
and Z a variable point. As Z
varies in one of the half-planes
with edge Z 1 Z 2 , for the sensed
angleθ=FZ 1 ZZ 2 let|θ|◦=
|γ|◦ where γ is a fixed non-
null and non-straight angle in
A(F′), while as Z varies in the
other half-plane with edge Z 1 Z 2 ,


let|θ|◦=|γ+ (^180) F′|◦.ThenZ
lies on a circle which passes
through Z 1 and Z 2.


O I


J H^1


H 2


H 4 H 3








Z 0 I 0


J 0


Z 1


Z 2


Z


Figure 10.9.
Proof.Wehave
z 2 −z
z 1 −z

=tcisγ

for somet∈R{ 0 }.Then


z=

z 2 −tz 1 cisγ
1 −tcisγ

so that with cotγ=cosγ/sinγ,


z−

1


2


(z 1 +z 2 )−

1


2


ıcotγ.(z 2 −z 1 )

=

z 2 −tz 1 cisγ
1 −tcisγ


1


2


(z 1 +z 2 )−

1


2


icotγ.(z 2 −z 1 )

=


1
2 (z^2 −z^1 )[^1 +tcisγ−ıcotγ(^1 −tcisγ)]
1 −tcisγ

=

1
2 (z^2 −z^1 )[sinγ(^1 +tcisγ)−ıcosγ(^1 −tcisγ)]
sinγ( 1 −tcisγ)

=

1
2 (z^2 −z^1 )[sinγ+ı(t−cosγ)]
sinγ( 1 −tcisγ)

and this has absolute value
|z 2 −z 1 |
2 |sinγ|


This shows thatZlies on a circle, the centre and length of radius of which are evident.


10.9.3Complexcross-ratio ..........................


Let Z 2 ,Z 3 ,Z 4 be non-collinear points andCthe circle that contains them. Then Z∈
Z 3 Z 4 lies inCif and only if



(z−z 3 )(z 2 −z 4 )
(z−z 4 )(z 2 −z 3 )

= 0.

Free download pdf