Geometry with Trigonometry

(Marvins-Underground-K-12) #1

172 Complex coordinates; sensed angles; angles between lines Ch. 10


is equal to


k^2 [(x 5 −x 4 )(y 5 −y 4 )+x 5 y 4 +x 4 y 5 ]−(x 5 y 4 +x 4 y 5 )(x 4 x 5 +y 4 y 5 )
=k^2 (x 5 y 5 +x 4 y 4 )−[x 4 y 4 (x^25 +y^25 )+x 5 y 5 (x^24 +y^24 )]
=(k^2 −k^2 )(x 5 y 5 +x 4 y 4 )= 0.

Similarly the numerator in


1
2

(y 5 −y 4 )^2 −(x 5 −x 4 )^2
k^2 −(x 4 x 5 +y 4 y 5 )

−x^4 x^5 −y^4 y^5
k^2

equals


k^2 [(y 5 −y 4 )^2 −(x 5 −x 4 )^2 − 2 (x 4 x 5 −y 4 y 5 )]+ 2 (x 4 x 5 +y 4 y 5 )(x 4 x 5 −y 4 y 5 )
=k^2 [y^25 +y^24 −x^25 −x^24 ]+ 2 (x^24 x^25 −y^24 y^25 )
=k^2 [y^25 +y^24 −x^25 −x^24 ]+ 2 [x^24 (k^2 −y^25 )−y^24 y^25 ]
=k^2 [y^25 +y^24 −x^25 −x^24 ]+ 2 [x^24 k^2 −y^25 (x^24 +y^24 )]
=k^2 [y^25 +y^24 −x^25 −x^24 + 2 x^24 − 2 y^25 ]= 0.

To apply these we note that by 10.10.4

sinαd=

y 4
k

,cosαd=

x 4
k

,sinβd=

y 5
k

,cosβd=

x 5
k

.


The sumγd=αd+βdhas side-linesOQandOZ 6 , and we sub-divide into two major
cases. First we suppose thatx 5 y 4 +x 4 y 5 >0 or equivalently|αd|◦+|βd|◦<180. Then
y 6 >0 and we have
sinγd=y^6
k


,cosγd=x^6
k

.


It follows from (10.10.2) that


sin(αd+βd)=sinαdcosβd+cosαdsinβd,
cos(αd+βd)=cosαdcosβd−sinαdsinβd.

Secondly we suppose thatx 5 y 4 +x 4 y 5 <0 or equivalently|αd|◦+|βd|◦>180.
Theny 6 <0sowehave


sinγd=−

y 6
k,cosγd=−

x 6
k.

It follows from (10.10.2) that


−sin(αd+βd)=sinαdcosβd+cosαdsinβd,
−cos(αd+βd)=cosαdcosβd−sinαdsinβd.

There is a further case whenx 5 y 4 +x 4 y 5 =0 and we obtain these formulae according
asx 4 x 5 −y 4 y 5 is positive or negative, respectively. Thus the addition formulae for sine
and cosine of duo-angles are more complicated than those of angles.

Free download pdf