Geometry with Trigonometry

(Marvins-Underground-K-12) #1

196 Vector and complex-number methods Ch. 11


As the coefficients on each side add to 1, by the uniqueness in 11.4.2 we can equate
coefficients and thus obtain


1 −t=su,t=( 1 −u)( 1 −r),r( 1 −u)=−u( 1 −s).

On eliminatinguwe obtain


r
1 −s

s
1 −t

t
1 −r

=−


u
1 −u

1


u

( 1 −u)=− 1 ,

and so r


1 −r

s
1 −s

t
1 −t

=− 1.


This yields the stated result. This is known asMenelaus’ theorem.


11.5.2 Ceva’s theorem and converse, 1678 A.D. ...............


For non-collinear points Z 1 ,Z 2 and Z 3 ,letZ 4 ∈Z 2 Z 3 ,Z 5 ∈Z 3 Z 1 and Z 6 ∈Z 1 Z 2 .If
Z 1 Z 4 ,Z 2 Z 5 and Z 3 Z 6 are concurrent, then


Z 2 Z 4
Z 4 Z 3

Z 3 Z 5


Z 5 Z 1


Z 1 Z 6


Z 6 Z 2


= 1. (11.5.1)


Proof. Denoting the point of concurrency byZ 0 ,wehave

Z 4 =( 1 −u)Z 0 +uZ 1 =( 1 −r)Z 2 +rZ 3 ,
Z 5 =( 1 −v)Z 0 +vZ 2 =( 1 −s)Z 3 +sZ 1 ,
Z 6 =( 1 −w)Z 0 +wZ 3 =( 1 −t)Z 1 +tZ 2 ,

for someu,v,w,r,s,t∈R.Then


Z 0 =−


u
1 −u

Z 1 +


1 −r
1 −u

Z 2 +


r
1 −u

Z 3 ,


Z 0 =


s
1 −v

Z 1 −


v
1 −v

Z 2 +


1 −s
1 −v

Z 3 ,


Z 0 =


1 −t
1 −w

Z 1 +


t
1 −w

Z 2 −


w
1 −w

Z 3.


On equating the coefficients of
Z 1 ,Z 2 andZ 3 , in turn, we obtain



u
1 −u

=


s
1 −v

=


1 −t
1 −w

,


1 −r
1 −u

=− v
1 −v

= t
1 −w

,


r
1 −u

=


1 −s
1 −v

=−


w
1 −w

.











Z 1


Z 2 Z 4 Z 3


Z (^6) Z 5
Figure 11.7.

Free download pdf