Geometry with Trigonometry

(Marvins-Underground-K-12) #1

198 Vector and complex-number methods Ch. 11


andsohave


Z 4 =

st
st+( 1 −s)( 1 −t)

Z 2 +


( 1 −s)( 1 −t)
st+( 1 −s)( 1 −t)

Z 3.


With the second pair of solutions above, we obtain that


Z 0 =


1 −vw
( 1 −v)( 1 −w)

Z 1 −


v( 1 −w)
( 1 −v)( 1 −w)

Z 2


w( 1 −v)
( 1 −v)( 1 −w)

Z 3 ,


andalsothat


Z 4 =

v( 1 −w)
v+w− 2 vw

Z 2 +


w( 1 −v)
v+w− 2 vw

Z 3 ,


so that


Z 0 =

1 −vw
( 1 −v)( 1 −w)

Z 1 −


v+w− 2 vw
( 1 −v)( 1 −w)

Z 4.


As the sum of the coefficients ofZ 1 andZ 4 is equal to 1,Z 1 Z 4 passes throughZ 0 .This
proves the result.
To obtain a formula forZ 0 we note that on solving the second pair of solutions
above forvandw, we obtain the pair of solutions


v= 1 ,w=1; v=−

st
1 −t

,w=−

( 1 −s)( 1 −t)
s

.


To see this, note that


1 −w=−

1 −v
v

t,w= 1 +

1 −v
v

t,

so that
1 −v


(


1 +^1 −vvt

)


1 −v
v t

=s, i.e.

1 −v−( 1 −v)t
−^1 −vvt

=s.

Thus eitherv=1 and consequentlyw=1, or


1 −t
−tv

=s,i.e.v=

st
1 −t

,


and hence


w=−

( 1 −s)( 1 −t)
s

.


The first pair lead toZ 5 =Z 2 ,Z 6 =Z 3 , another degenerate case, while the second
pair lead to


Z 0 =


s( 1 −t)
1 −t+st

Z 1 +


st
1 −t+st

Z 2 +


( 1 −s)( 1 −t)
1 −t+st

Z 3. (11.5.2)


Because of the condition (11.5.1) the coefficients in (11.5.2) could be given in
several different forms.

Free download pdf