Geometry with Trigonometry

(Marvins-Underground-K-12) #1

236 Vector and complex-number methods Ch. 11


Exercises


11.1 Show that ifZ 1 =Z 2 , the pointsZon the perpendicular bisector of[Z 1 ,Z 2 ]are
those for which

−→


OZ=^12 (


−−→


OZ 1 +


−−→


OZ 2 )+t(

−−→


OZ 2 −


−−→


OZ 1 )⊥,forsomet∈R.

11.2 Ifl=Z 1 Z 2 ,thenZ 4 =πl(Z 3 )if and only ifZ 4 =Z 1 +s(Z 2 −Z 1 )where

s=

(−OZ−→ 3 −−OZ−→ 1 ).(−OZ−→ 2 −−OZ−→ 1 )



−−→


OZ 2 −


−−→


OZ 1 ‖^2


,


and also if and only if

−−→


OZ 4 =


−−→


OZ 3 +t(

−−→


OZ 2 −


−−→


OZ 1 )⊥,where

t=−

(


−−→


OZ 3 −


−−→


OZ 1 ).(


−−→


OZ 2 −


−−→


OZ 1 )⊥



−−→


OZ 2 −


−−→


OZ 1 ‖^2


.


11.3 Ifl=Z 1 Z 2 ,thenZ 4 =sl(Z 3 )if and only if

−−→


OZ 4 =


−−→


OZ 3 +t(

−−→


OZ 2 −


−−→


OZ 1 )⊥,where

t=− 2

(


−−→


OZ 3 −


−−→


OZ 1 ).(


−−→


OZ 2 −


−−→


OZ 1 )⊥



−−→


OZ 2 −


−−→


OZ 1 ‖^2


.


11.4 IfZ 2 ∈[Z 0 ,Z 1 andlis the mid-line of the angle support|Z 1 Z 0 Z 2 ,thenZ∈lif
and only if
−→
OZ=

−−→


OZ 0


+t

[


1



−−→


OZ 2 −


−−→


OZ 0 ‖


(


−−→


OZ 2 −


−−→


OZ 0 )−


1



−−→


OZ 1 −


−−→


OZ 0 ‖


(


−−→


OZ 1 −


−−→


OZ 0 )


]⊥


,


for somet∈R.

11.5 Prove that

−→


OZ




−−→


OZ 1 =cosα(

−→


OZ−


−−→


OZ 1 )+sinα(

−→


OZ−


−−→


OZ 1 )⊥, represents a
rotation about the pointZ 1 , through the angleα.

11.6 For any vector−OZ→, withZ≡F(x,y),define

−→
OZ


=

−→


OU,


−→


OZ



=

−→


OV,


whereU≡F(x,−y),V≡F(y,x),sothatU=sOI(Z),V=sl(Z),lbeing the
mid-line of|IOJ. Prove that

(i)
(

−−→


OZ 1 +


−−→


OZ 2 )=


−−→


OZ 1



+

−−→


OZ 2



,

(ii)
(k

−→


OZ)=k(

−→


OZ),

Free download pdf