3.3. COMBINING FUZZY SETS 95
The ìadditiveî generatorF:[0,1]→[0,∞]for nilpotent t-norms that is com-
monly referred to in the literature is related tofbyF(x)/F(0) = (1−f(x)).
Thus, there is a decreasing functionF:[0,1]→[0,∞]with
xïy=F−^1 ((F(x)+F(y))∧F(0))A ìmultiplicativeî generatorG:[0,1]→[0,1]is obtained fromfbyG(x)=
ef(x)−^1 , giving a third representation for nilpotent t-norms
xïy=G−^1 ((G(x)G(y))∨G(0))Here are two well-known examples of strict t-norms. For other strict and
nilpotent t-norms, see Tables 3.1 (a) and 3.2 (a) starting on page 97.
ïHamacher one-parameter family of t-norms:x◦Hy=xy
x+y−xy
generator:f(x)=ex−x 1ïThe Frank one-parameter family of t-norms includes strict, nilpotent, and
idempotent t-norms:x◦Fay=loga∑
1+
(ax−1) (ay−1)
a− 1∏
, 0 <a<∞,a 6 =1x◦F 1 y= lima→ 1 logah
1+(ax−1)(ay−1)
a− 1i
=xyx◦F∞y=lima→∞logah
1+(ax−1)(ay−1)
a− 1i
=(x+y−1)∨ 0x◦F 0 y= lima→ 0 +logah
1+(ax−1)(ay−1)
a− 1i
=x∧ygenerators:Fa(x)=ax− 1
a− 1
, 0 <a<∞,a 6 =1;F 1 (x)=xTriangular conorms The corresponding generalization for OR is atriangu-
lar conormort-conorm.
Definition 3.3At-conormis a binary operation∗:[0,1]◊[0,1]→[0,1]
satisfying for allx,y,z∈[0,1]
1.x∗y=y∗x(∗is commutative)2.x∗(y∗z)=(x∗y)∗z(∗is associative)3.x∗0=0∗x=x( 0 is an identity)4.y≤zimpliesx∗y≤x∗z(∗is increasing in each variable)