100 CHAPTER 3. FUZZY LOGIC FOR CONTROL
7.x^0 =1−loga
°
a−a^1 −x+1
¢
,a> 0 ,a 6 =1
- Gˆdel: x^0 =0ifx 6 =0, 00 =1 (Note(x^0 )^06 =x)
Following are some pictures of strong negations.
0
0.2
0.4
0.6
0.8
1
y
0.2 0.4x0.6 0.8 1
1 −x
0
0.2
0.4
0.6
0.8
1
y
0.2 0.4x0.6 0.8 1
°
1 −x^3
¢^13
0
0.2
0.4
0.6
0.8
1
y
0.2 0.4x0.6 0.8 1
≥
1 −x
12 ¥^2
0
0.2
0.4
0.6
0.8
1
y
0.2 0.4x0.6 0.8 1
Ω
1 −x^5 if x≤ 0. 755
√ (^51) −x if x≥ 0. 755
0
0.2
0.4
0.6
0.8
1
y
0.2 0.4x0.6 0.8 1
1 −x
1+x
0
0.2
0.4
0.6
0.8
1
y
0.2 0.4x0.6 0.8 1
1 −x
1+6x
Notethatthesegraphsareallsymmetricabouttheliney=x.Thisisa
result of the requirement thatη(η(x)) =x, which implies that for each point
(x,η(x))in the graph, the point(η(x),η(η(x))) = (η(x),x)is also in the
graph. The last two examples areSugeno negations[71], functions of the
form
η(x)=
1 −x
1+λx
,λ>− 1
A nilpotent t-norm has a (strong) negation naturally associated with it. This
is the ìresidualî defined by
η(x)=
_
{y:x 4 y=0}
For example, 1 −xis the residual of the bounded product.
De Morgan systems If^0 is a strong negation, the equations
(x∨y)^0 = x^0 ∧y^0
(x∧y)^0 = x^0 ∨y^0