8.4. IDENTIFICATION OF TRASH IN COTTON 273
Table 8.7. Final values of consequent
parameters: 232-partition
Consequent Parametersaji
ji 01 2 3
15. 6045 − 0. 0623 5 .4067 10. 2944
20 .0746 0. 2576 0. 2428 − 5. 9242
3 − 1 .8363 0. 0098 1. 3515 − 0. 7228
40. 1011 − 0. 0361 0 .4841 2. 0547
51. 2008 − 0. 0002 − 0. 3727 − 0. 4426
60 .7795 0. 0028 0. 3548 − 1. 0790
7 − 3 .5730 0. 0003 − 1 .9937 4. 0406
86 .4012 0. 0003 − 28 .0326 27. 2515
95. 9735 − 0. 0002 − 4. 8844 − 3. 2546
10 2. 1531 − 0. 0001 1. 4765 − 4. 9520
11 − 1 .4469 0. 0002 2 .1095 2. 7445
12 − 0 .2404 0. 0001 0 .0892 1. 3792
Table 8.8. Initial andfinal values of the premise parameters: 232-partition.
Ling. Var. Area Solidity Edif
Ling. Val. Small Large Small Medium Large Small Large
Initial a 180.0000 4820.0000 0.3333 0.3333 0.3333 0.2500 0.2500
Para- b 2.0000 40.0000 2.0000 2.0000 2.0000 2.0000 2.0000
meters c 0.0000 5000.0000 0.0000 0.5000 1.0000 0.0000 0.5000
Final a 179.9964 4819.9983 0.4730 0.4839 0.0441 0.1097 0.0874
Para- b 2.2446 40.0018 1.9899 2.0003 2.0442 2.0230 2.0453
meters c -0.0010 5000.0017 0.0983 0.5528 0.9362 0.0057 0.3249
Figures 8.15ó8.17 show the initial and thefinal (tuned) membership func-
tions forarea,solidity,andEdifmeasures. Based on the premise and consequent
parameters, the training data is classified to evaluate the classification results.
The decision procedure for the identificationofthetrashtypesisasfollows:
The input pattern for each object in the test sample is passed in the forward
direction. With thefinal premise parameters defining the membership functions,
the outputs at each layer are calculated. The outputy which is the sum of the
outputs of Layer 4 is calculated. The outputs of the adaptive nodes at Layer
4 use the updated consequent parameters. Based on the outputy, the input
test pattern is classified to belong to a particular trash type. If the output is in
the range of the target value±0.1, then the trash type is classified to belong to
that trash type. For example, if the output of the network lies in the range of
0.2±0.1, it is classified as bark, since 0.2 is the desired value of bark objects.
For example, the output for object 16 (pattern 9) of test sample #1 (TA114) is
0.2777 and is classified as a bark object (Table 8.10).