3.2. FUZZY SETS IN CONTROL 89
TheGaussian functions, the familiar bell-shaped curve, are of the form
A(x)=e−
(x−c)^2
2 σ^2
These are related to the well-known normal or Gaussian distributions in prob-
ability and have useful mathematical properties.
0
0.5y
Gaussiane−
x 22
0
0.5y
Gaussiane−
(x−5)^2
25
The parameterscandσdetermine the center and the shape of the curve, respec-
tively. The valuesc=0andσ=1define thestandard Gaussian membership
functione−
x 22
, centered atc=0, and with area under the curve equal to
√
2 π.
This is the Gaussian curve depicted on the left above.
A Cauchy function, orgeneralized bell curve,isgivenbyfunctionsofthe
formA(x)=1/
≥
1+
Ø
Øx−c
a
Ø
Ø^2 b
¥
. The parametercdetermines the center of the
curve, andaandbdetermine its shape.
0.2
0.4
0.6
0.8
-4 -2 0 2 x 4 6
1
.≥
1+
Ø
Øx−^1
2
Ø
Ø^2
¥
0.2
0.4
0.6
0.8
-200 (^0200) x 400
1
.≥
1+
Ø
Øx−^100
2
Ø
Ø^1 /^2
¥
0
0.2
0.4
0.6
0.8
-2-1 (^1234) x
1
.≥
1+
Ø
Øx−^1
2
Ø
Ø^200
¥
0
0.2
0.4
0.6
0.8
-1500 -1000 -500 500 x 1000 1500
1
.≥
1+
Ø
Øx−^1
200
Ø
Ø^2
¥
The S- and Z-functions aresigmoidal functionsof the form
A(x)=
1
1+e−(x−m)σ
0
y0.5
S-function1+e^1 −x+1
0
y0.5
Z-function1+e^1 x− 1