Nature - USA (2020-09-24)

(Antfer) #1

516 | Nature | Vol 585 | 24 September 2020


Review



  1. Gaines, S. et al. Western diet promotes intestinal colonization by collagenolytic microbes
    and promotes tumor formation after colorectal surgery. Gastroenterology, 158 , 958–970
    (2020).

  2. Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal
    cancer. Nat. Rev. Microbiol. 12 , 661–672 (2014).

  3. De Almeida, C. V., de Camargo, M. R., Russo, E. & Amedei, A. Role of diet and gut
    microbiota on colorectal cancer immunomodulation. World J. Gastroenterol. 25 , 151–162
    (2019).

  4. Nguyen, L. H. et al. Association between sulfur-metabolizing bacterial communities
    in stool and risk of distal colorectal cancer in men. Gastroenterology 158 , 1313–1325
    (2020).

  5. Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific
    phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25 , 968–976
    (2019).

  6. Long, S. et al. Metaproteomics characterizes human gut microbiome function in
    colorectal cancer. NPJ Biofilms Microbiomes 6 , 14 (2020).

  7. Kawalek, J. C., Hallmark, R. K. & Andrews, A. W. Effect of lithocholic acid on the
    mutagenicity of some substituted aromatic amines. J. Natl Cancer Inst. 71 , 293–298
    (1983).

  8. Shibuya, N. et al. Co-mutagenicity of glyco- and tauro-deoxycholic acids in the Ames
    test. Mutat. Res. 395 , 1–7 (1997).

  9. Lavoie, S. et al. Expression of FFAR2 by dendritic cells prevents their expression of IL27
    and is required for maintenance of mucosal barrier and immune response against
    colorectal tumors in mice. Gastroenterology 158 , 1359–1372.e9 (2020).

  10. Liu, T. et al. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2
    macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence.
    J. Cell. Mol. Med. 24 , 2648–2662 (2020).

  11. Denison, M. S. & Nagy, S. R. Activation of the aryl hydrocarbon receptor by structurally
    diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43 ,
    309–334 (2003).

  12. Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by
    maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49 , 353–362
    (2018).

  13. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate
    regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl
    Acad. Sci. USA 111 , 2247–2252 (2014).

  14. Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program
    in macrophages. Immunity 50 , 432–445.e7 (2019).

  15. Zagato, E. et al. Endogenous murine microbiota member Faecalibaculum rodentium and
    its human homologue protect from intestinal tumour growth. Nat. Microbiol. 5 , 511–524
    (2020).

  16. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite
    butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40 , 128–139
    (2014).

  17. Donohoe, D. R. et al. A gnotobiotic mouse model demonstrates that dietary fiber protects
    against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner.
    Cancer Discov. 4 , 1387–1397 (2014).

  18. Kaiko, G. E. et al. The colonic crypt protects stem cells from microbiota-derived
    metabolites. Cell 165 , 1708–1720 (2016).

  19. Belcheva, A. et al. Gut microbial metabolism drives transformation of MSH2-deficient
    colon epithelial cells. Cell 158 , 288–299 (2014).

  20. Uronis, J. M. et al. Modulation of the intestinal microbiota alters colitis-associated
    colorectal cancer susceptibility. PLoS ONE 4 , e6026 (2009).

  21. Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible
    colitis and colorectal cancer. J. Clin. Invest. 123 , 700–711 (2013).

  22. Chen, G. Y., Shaw, M. H., Redondo, G. & Núñez, G. The innate immune receptor Nod1
    protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 68 ,
    10060–10067 (2008).

  23. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive
    IL-23/IL-17-mediated tumour growth. Nature 491 , 254–258 (2012).

  24. Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal
    cancers. Proc. Natl Acad. Sci. USA 111 , 18321–18326 (2014).

  25. Drewes, J. L. et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and
    biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 3 ,
    34 (2017).

  26. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms
    containing tumorigenic bacteria. Science 359 , 592–597 (2018).

  27. Tomkovich, S. et al. Human colon mucosal biofilms from healthy or colon cancer hosts
    are carcinogenic. J. Clin. Invest. 129 , 1699–1712 (2019).

  28. Domingue, J. C., Drewes, J. L., Merlo, C. A., Housseau, F. & Sears, C. L. Host responses to
    mucosal biofilms in the lung and gut. Mucosal Immunol. 13 , 413–422 (2020).

  29. Hu, B. et al. Microbiota-induced activation of epithelial IL-6 signaling links
    inflammasome-driven inflammation with transmissible cancer. Proc. Natl Acad. Sci. USA
    110 , 9862–9867 (2013).

  30. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of
    T helper type 17 T cell responses. Nat. Med. 15 , 1016–1022 (2009).

  31. Wu, P. et al. γδT17 cells promote the accumulation and expansion of myeloid-derived
    suppressor cells in human colorectal cancer. Immunity 40 , 785–800 (2014).

  32. Zackular, J. P. et al. The gut microbiome modulates colon tumorigenesis. MBio 4 , e00692-
    13 (2013).

  33. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β
    signalling. Nature 467 , 967–971 (2010).

  34. Dmitrieva-Posocco, O. et al. Cell-type-specific responses to interleukin-1 control
    microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity 50 ,
    166–180.e7 (2019).
    Using mouse models, this study highlights how cell-type-specific cytokine responses
    differentially influence tumorigenesis.
    85. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon
    receptor and balance mucosal reactivity via interleukin-22. Immunity 39 , 372–385 (2013).
    86. Busbee, P. B. et al. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in
    an IL-22-dependent manner. JCI Insight 5 , e127551 (2020).
    87. Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of
    interleukin-22 in a mouse model. J. Exp. Med. 210 , 917–931 (2013).
    88. Hernandez, P., Gronke, K. & Diefenbach, A. A catch-22: interleukin-22 and cancer. Eur. J.
    Immunol. 48 , 15–31 (2018).
    89. Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress.
    Nature 566 , 249–253 (2019).
    This study shows how dietary stimuli mediates IL-22 signalling, which can in turn
    protect stem cells from genotoxic stress.
    90. Perez, L. G. et al. TGF-β signaling in TH17 cells promotes IL-22 production and
    colitis-associated colon cancer. Nat. Commun. 11 , 2608 (2020).
    91. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel
    diseases. Nature 569 , 655–662 (2019).
    92. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the
    microbiota. Science 338 , 120–123 (2012).
    93. Arthur, J. C. et al. Microbial genomic analysis reveals the essential role of inflammation in
    bacteria-induced colorectal cancer. Nat. Commun. 5 , 4724 (2014).
    94. Dennis, K. L. et al. Adenomatous polyps are driven by microbe-instigated focal
    inflammation and are controlled by IL-10-producing T cells. Cancer Res. 73 , 5905–5913
    (2013).
    95. Moschen, A. R. et al. Lipocalin 2 protects from inflammation and tumorigenesis
    associated with gut microbiota alterations. Cell Host Microbe 19 , 455–469 (2016).
    96. Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma
    sequence. Nat. Commun. 6 , 6528 (2015).
    97. Chen, D. et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal
    tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett.
    469 , 456–467 (2020).
    98. Malik, A. et al. IL-33 regulates the IgA-microbiota axis to restrain IL-1α-dependent colitis
    and tumorigenesis. J. Clin. Invest. 126 , 4469–4481 (2016).
    99. Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2.
    Science 295 , 1726–1729 (2002).
    100. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus
    barrier and enhances pathogen susceptibility. Cell 167 , 1339–1353.e21 (2016).
    Using a gnotobiotic mouse model, this study correlates a low-fibre diet to the
    expansion of a mucus-degrading bacteria and aggressive colitis.
    101. Seregin, S. S. et al. NLRP6 protects Il10−/− mice from colitis by limiting colonization of
    Akkermansia muciniphila. Cell Rep. 19 , 733–745 (2017).
    102. Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163 ,
    1444–1456 (2015).
    103. Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas
    of the colon: role of interleukin 18. J. Exp. Med. 207 , 1625–1636 (2010).
    104. Cremonesi, E. et al. Gut microbiota modulate T cell trafficking into human colorectal
    cancer. Gut 67 , 1984–1994 (2018).
    105. Lévy, J. et al. Intestinal inhibition of Atg7 prevents tumour initiation through a
    microbiome-influenced immune response and suppresses tumour growth. Nat. Cell Biol.
    17 , 1062–1073 (2015).
    106. Yu, A. I. et al. Gut microbiota modulate CD8 T cell responses to influence
    colitis-associated tumorigenesis. Cell Rep. 31 , 107471 (2020).
    107. Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33 ,
    547–562 (2018).
    108. Thiele Orberg, E. et al. The myeloid immune signature of enterotoxigenic Bacteroides
    fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10 , 421–433 (2017).
    109. Chung, L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory
    cascade via targeting of colonic epithelial cells. Cell Host Microbe 23 , 203–214.e5 (2018).
    In this study, it is shown that enterotoxic B. fragilis creates a pro-tumorigenic
    environment in the distal colon by driving locally restricted chemokine expression
    in mice.
    110. James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat.
    Immunol. 21 , 343–353 (2020).
    111. Kim, J. M., Oh, Y. K., Kim, Y. J., Oh, H. B. & Cho, Y. J. Polarized secretion of CXC chemokines
    by human intestinal epithelial cells in response to Bacteroides fragilis enterotoxin: NF-κB
    plays a major role in the regulation of IL-8 expression. Clin. Exp. Immunol. 123 , 421–427
    (2001).
    112. Sanfilippo, L. et al. Bacteroides fragilis enterotoxin induces the expression of IL-8 and
    transforming growth factor-beta (TGF-β) by human colonic epithelial cells. Clin. Exp.
    Immunol. 119 , 456–463 (2000).
    113. Zhang, Y., Weng, Y., Gan, H., Zhao, X. & Zhi, F. Streptococcus gallolyticus conspires
    myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem.
    Biophys. Res. Commun. 506 , 907–911 (2018).
    114. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and
    modulates the tumor-immune microenvironment. Cell Host Microbe 14 , 207–215
    (2013).
    115. Long, X. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and
    modulates tumour immunity. Nat. Microbiol. 4 , 2319–2330 (2019).
    116. Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory
    receptor TIGIT protects tumors from immune cell attack. Immunity 42 , 344–355 (2015).
    117. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science
    364 , 952–955 (2019).
    118. Co, J. Y. et al. Controlling epithelial polarity: a human enteroid model for host–pathogen
    interactions. Cell Rep.  26 , 2509–2520.e4 (2019).
    119. Dutta, D. & Clevers, H. Organoid culture systems to study host–pathogen interactions.
    Curr. Opin. Immunol. 48 , 15–22 (2017).
    120. Qin, X. et al. Cell-type-specific signaling networks in heterocellular organoids. Nat.
    Methods 17 , 335–342 (2020).

Free download pdf