516 | Nature | Vol 585 | 24 September 2020
Review
- Gaines, S. et al. Western diet promotes intestinal colonization by collagenolytic microbes
and promotes tumor formation after colorectal surgery. Gastroenterology, 158 , 958–970
(2020). - Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal
cancer. Nat. Rev. Microbiol. 12 , 661–672 (2014). - De Almeida, C. V., de Camargo, M. R., Russo, E. & Amedei, A. Role of diet and gut
microbiota on colorectal cancer immunomodulation. World J. Gastroenterol. 25 , 151–162
(2019). - Nguyen, L. H. et al. Association between sulfur-metabolizing bacterial communities
in stool and risk of distal colorectal cancer in men. Gastroenterology 158 , 1313–1325
(2020). - Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific
phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25 , 968–976
(2019). - Long, S. et al. Metaproteomics characterizes human gut microbiome function in
colorectal cancer. NPJ Biofilms Microbiomes 6 , 14 (2020). - Kawalek, J. C., Hallmark, R. K. & Andrews, A. W. Effect of lithocholic acid on the
mutagenicity of some substituted aromatic amines. J. Natl Cancer Inst. 71 , 293–298
(1983). - Shibuya, N. et al. Co-mutagenicity of glyco- and tauro-deoxycholic acids in the Ames
test. Mutat. Res. 395 , 1–7 (1997). - Lavoie, S. et al. Expression of FFAR2 by dendritic cells prevents their expression of IL27
and is required for maintenance of mucosal barrier and immune response against
colorectal tumors in mice. Gastroenterology 158 , 1359–1372.e9 (2020). - Liu, T. et al. High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2
macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence.
J. Cell. Mol. Med. 24 , 2648–2662 (2020). - Denison, M. S. & Nagy, S. R. Activation of the aryl hydrocarbon receptor by structurally
diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43 ,
309–334 (2003). - Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by
maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49 , 353–362
(2018). - Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate
regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl
Acad. Sci. USA 111 , 2247–2252 (2014). - Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program
in macrophages. Immunity 50 , 432–445.e7 (2019). - Zagato, E. et al. Endogenous murine microbiota member Faecalibaculum rodentium and
its human homologue protect from intestinal tumour growth. Nat. Microbiol. 5 , 511–524
(2020). - Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite
butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40 , 128–139
(2014). - Donohoe, D. R. et al. A gnotobiotic mouse model demonstrates that dietary fiber protects
against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner.
Cancer Discov. 4 , 1387–1397 (2014). - Kaiko, G. E. et al. The colonic crypt protects stem cells from microbiota-derived
metabolites. Cell 165 , 1708–1720 (2016). - Belcheva, A. et al. Gut microbial metabolism drives transformation of MSH2-deficient
colon epithelial cells. Cell 158 , 288–299 (2014). - Uronis, J. M. et al. Modulation of the intestinal microbiota alters colitis-associated
colorectal cancer susceptibility. PLoS ONE 4 , e6026 (2009). - Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible
colitis and colorectal cancer. J. Clin. Invest. 123 , 700–711 (2013). - Chen, G. Y., Shaw, M. H., Redondo, G. & Núñez, G. The innate immune receptor Nod1
protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 68 ,
10060–10067 (2008). - Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive
IL-23/IL-17-mediated tumour growth. Nature 491 , 254–258 (2012). - Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal
cancers. Proc. Natl Acad. Sci. USA 111 , 18321–18326 (2014). - Drewes, J. L. et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and
biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 3 ,
34 (2017). - Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms
containing tumorigenic bacteria. Science 359 , 592–597 (2018). - Tomkovich, S. et al. Human colon mucosal biofilms from healthy or colon cancer hosts
are carcinogenic. J. Clin. Invest. 129 , 1699–1712 (2019). - Domingue, J. C., Drewes, J. L., Merlo, C. A., Housseau, F. & Sears, C. L. Host responses to
mucosal biofilms in the lung and gut. Mucosal Immunol. 13 , 413–422 (2020). - Hu, B. et al. Microbiota-induced activation of epithelial IL-6 signaling links
inflammasome-driven inflammation with transmissible cancer. Proc. Natl Acad. Sci. USA
110 , 9862–9867 (2013). - Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of
T helper type 17 T cell responses. Nat. Med. 15 , 1016–1022 (2009). - Wu, P. et al. γδT17 cells promote the accumulation and expansion of myeloid-derived
suppressor cells in human colorectal cancer. Immunity 40 , 785–800 (2014). - Zackular, J. P. et al. The gut microbiome modulates colon tumorigenesis. MBio 4 , e00692-
13 (2013). - Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β
signalling. Nature 467 , 967–971 (2010). - Dmitrieva-Posocco, O. et al. Cell-type-specific responses to interleukin-1 control
microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity 50 ,
166–180.e7 (2019).
Using mouse models, this study highlights how cell-type-specific cytokine responses
differentially influence tumorigenesis.
85. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon
receptor and balance mucosal reactivity via interleukin-22. Immunity 39 , 372–385 (2013).
86. Busbee, P. B. et al. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in
an IL-22-dependent manner. JCI Insight 5 , e127551 (2020).
87. Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of
interleukin-22 in a mouse model. J. Exp. Med. 210 , 917–931 (2013).
88. Hernandez, P., Gronke, K. & Diefenbach, A. A catch-22: interleukin-22 and cancer. Eur. J.
Immunol. 48 , 15–31 (2018).
89. Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress.
Nature 566 , 249–253 (2019).
This study shows how dietary stimuli mediates IL-22 signalling, which can in turn
protect stem cells from genotoxic stress.
90. Perez, L. G. et al. TGF-β signaling in TH17 cells promotes IL-22 production and
colitis-associated colon cancer. Nat. Commun. 11 , 2608 (2020).
91. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel
diseases. Nature 569 , 655–662 (2019).
92. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the
microbiota. Science 338 , 120–123 (2012).
93. Arthur, J. C. et al. Microbial genomic analysis reveals the essential role of inflammation in
bacteria-induced colorectal cancer. Nat. Commun. 5 , 4724 (2014).
94. Dennis, K. L. et al. Adenomatous polyps are driven by microbe-instigated focal
inflammation and are controlled by IL-10-producing T cells. Cancer Res. 73 , 5905–5913
(2013).
95. Moschen, A. R. et al. Lipocalin 2 protects from inflammation and tumorigenesis
associated with gut microbiota alterations. Cell Host Microbe 19 , 455–469 (2016).
96. Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma
sequence. Nat. Commun. 6 , 6528 (2015).
97. Chen, D. et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal
tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett.
469 , 456–467 (2020).
98. Malik, A. et al. IL-33 regulates the IgA-microbiota axis to restrain IL-1α-dependent colitis
and tumorigenesis. J. Clin. Invest. 126 , 4469–4481 (2016).
99. Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2.
Science 295 , 1726–1729 (2002).
100. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus
barrier and enhances pathogen susceptibility. Cell 167 , 1339–1353.e21 (2016).
Using a gnotobiotic mouse model, this study correlates a low-fibre diet to the
expansion of a mucus-degrading bacteria and aggressive colitis.
101. Seregin, S. S. et al. NLRP6 protects Il10−/− mice from colitis by limiting colonization of
Akkermansia muciniphila. Cell Rep. 19 , 733–745 (2017).
102. Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163 ,
1444–1456 (2015).
103. Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas
of the colon: role of interleukin 18. J. Exp. Med. 207 , 1625–1636 (2010).
104. Cremonesi, E. et al. Gut microbiota modulate T cell trafficking into human colorectal
cancer. Gut 67 , 1984–1994 (2018).
105. Lévy, J. et al. Intestinal inhibition of Atg7 prevents tumour initiation through a
microbiome-influenced immune response and suppresses tumour growth. Nat. Cell Biol.
17 , 1062–1073 (2015).
106. Yu, A. I. et al. Gut microbiota modulate CD8 T cell responses to influence
colitis-associated tumorigenesis. Cell Rep. 31 , 107471 (2020).
107. Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33 ,
547–562 (2018).
108. Thiele Orberg, E. et al. The myeloid immune signature of enterotoxigenic Bacteroides
fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10 , 421–433 (2017).
109. Chung, L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory
cascade via targeting of colonic epithelial cells. Cell Host Microbe 23 , 203–214.e5 (2018).
In this study, it is shown that enterotoxic B. fragilis creates a pro-tumorigenic
environment in the distal colon by driving locally restricted chemokine expression
in mice.
110. James, K. R. et al. Distinct microbial and immune niches of the human colon. Nat.
Immunol. 21 , 343–353 (2020).
111. Kim, J. M., Oh, Y. K., Kim, Y. J., Oh, H. B. & Cho, Y. J. Polarized secretion of CXC chemokines
by human intestinal epithelial cells in response to Bacteroides fragilis enterotoxin: NF-κB
plays a major role in the regulation of IL-8 expression. Clin. Exp. Immunol. 123 , 421–427
(2001).
112. Sanfilippo, L. et al. Bacteroides fragilis enterotoxin induces the expression of IL-8 and
transforming growth factor-beta (TGF-β) by human colonic epithelial cells. Clin. Exp.
Immunol. 119 , 456–463 (2000).
113. Zhang, Y., Weng, Y., Gan, H., Zhao, X. & Zhi, F. Streptococcus gallolyticus conspires
myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem.
Biophys. Res. Commun. 506 , 907–911 (2018).
114. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and
modulates the tumor-immune microenvironment. Cell Host Microbe 14 , 207–215
(2013).
115. Long, X. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and
modulates tumour immunity. Nat. Microbiol. 4 , 2319–2330 (2019).
116. Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory
receptor TIGIT protects tumors from immune cell attack. Immunity 42 , 344–355 (2015).
117. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science
364 , 952–955 (2019).
118. Co, J. Y. et al. Controlling epithelial polarity: a human enteroid model for host–pathogen
interactions. Cell Rep. 26 , 2509–2520.e4 (2019).
119. Dutta, D. & Clevers, H. Organoid culture systems to study host–pathogen interactions.
Curr. Opin. Immunol. 48 , 15–22 (2017).
120. Qin, X. et al. Cell-type-specific signaling networks in heterocellular organoids. Nat.
Methods 17 , 335–342 (2020).