Nature - USA (2020-09-24)

(Antfer) #1
Nature | Vol 585 | 24 September 2020 | 523


  1. Izhikevich, E. M. Dynamical Systems in Neuroscience. (MIT Press, 2007).

  2. Chua, L. Everything you wish to know about memristors but are afraid to ask.
    Radioengineering 24 , 319–368 (2015).

  3. Chua, L. Handbook of Memristor Networks (Springer Nature, 2019).

  4. Bohaichuk, S. M. et al. Fast spiking of a Mott VO 2 –carbon nanotube composite device.
    Nano Lett. 19 , 6751–6755 (2019).

  5. Kendall, J. D. & Kumar, S. The building blocks of a brain-inspired computer. Appl. Phys.
    Rev. 7 , 011305 (2020).

  6. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive
    systems. Nature Electronics 1 , 22 (2018).

  7. Paugam-Moisy, H. & Bohte, S. Computing with spiking neuron networks. In Handbook of
    Natural Computing (eds Rozenberg, G. et al.) 335–376 (Springer, 2012).

  8. Pickett, M. D., Borghetti, J., Yang, J. J., Medeiros-Ribeiro, G. & Williams, R. S. Coexistence
    of memristance and negative differential resistance in a nanoscale metal–oxide–metal
    system. Adv. Mater. 23 , 1730–1733 (2011).

  9. Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott
    memristors. Nat. Mater. 12 , 114–117 (2013).

  10. Yi, W. et al. Biological plausibility and stochasticity in scalable VO 2 active memristor
    neurons. Nat. Commun. 9 , 4661 (2018).

  11. Khanday, F. A., Kant, N. A., Dar, M. R., Zulkifli, T. Z. A. & Psychalinos, C. Low-voltage low-power
    integrable CMOS circuit implementation of integer- and fractional-order FitzHugh–Nagumo
    neuron model. IEEE Trans. Neural Netw. Learn. Syst. 30 , 2108–2122 (2018).

  12. Markram, H. Seven challenges for neuroscience. Funct. Neurol. 28 , 145–151 (2013).

  13. Palmer, T. Modelling: build imprecise supercomputers. Nature 526 , 32 (2015).

  14. Gibson, G. A. et al. An accurate locally active memristor model for S-type negative
    differential resistance in NbOx. Appl. Phys. Lett. 108 , 023505 (2016).

  15. Slesazeck, S. et al. Physical model of threshold switching in NbO 2 -based memristors. RSC
    Adv. 5 , 102318–102322 (2015).

  16. Kumar, S. et al. Physical origins of current- and temperature-controlled negative
    differential resistances in NbO 2. Nat. Commun. 8 , 658 (2017).

  17. Li, S., Liu, X., Nandi, S. K., Nath, S. K. & Elliman, R. G. Origin of current-controlled negative
    differential resistance modes and the emergence of composite characteristics with high
    complexity. Adv. Funct. Mater. 29 , 1905060 (2019).

  18. Goodwill, J. M. et al. Spontaneous current constriction in threshold switching devices.
    Nat. Commun. 10 , 1628 (2019).

  19. Zhang, J. et al. Thermally induced crystallization in NbO 2 thin films. Sci. Rep. 6 , 34294
    (2016).

  20. Seta, K. & Naito, K. Calorimetric study of the phase transition in NbO 2. J. Chem.
    Thermodyn. 14 , 921–935 (1982).

  21. Kumar, S. et al. Spatially uniform resistance switching of low current, high endurance
    titanium–niobium–oxide memristors. Nanoscale 9 , 1793 (2017).

  22. Kumar, S. et al. The phase transition in VO 2 probed using X-ray, visible and infrared
    radiations. Appl. Phys. Lett. 108 , 073102 (2016).
    27. Gibson, G. A. Designing negative differential resistance devices based on self-heating.
    Adv. Funct. Mater. 28 , 1704175 (2018).
    28. Pickett, M. D. & Williams, R. S. Phase transitions enable computational universality in
    neuristor-based cellular automata. Nanotechnology 24 , 384002 (2013).
    29. Kopell, N. & Somers, D. Anti-phase solutions in relaxation oscillators coupled through
    excitatory interactions. J. Math. Biol. 33 , 261–280 (1995).
    30. Hoppensteadt, F. C. & Izhikevich, E. M. Thalamo-cortical interactions modeled by weakly
    connected oscillators: could the brain use FM radio principles? Biosystems 48 , 85–94
    (1998).
    31. Bansal, K. et al. Cognitive chimera states in human brain networks. Sci. Adv. 5 , eaau8535
    (2019).
    32. Steriade, M. Synchronized activities of coupled oscillators in the cerebral cortex and
    thalamus at different levels of vigilance. Cereb. Cortex 7 , 583–604 (1997).
    33. Csaba, G. & Porod, W. Coupled oscillators for computing: a review and perspective. Appl.
    Phys. Rev. 7 , 011302 (2020).
    34. Chou, J., Bramhavar, S., Ghosh, S. & Herzog, W. Analog coupled oscillator based
    weighted Ising machine. Sci. Rep. 9 , 14786 (2019).
    35. Parihar, A., Shukla, N., Jerry, M., Datta, S. & Raychowdhury, A. Vertex coloring of graphs
    via phase dynamics of coupled oscillatory networks. Sci. Rep. 7 , 911 (2017); correction 8 ,
    6120 (2018).
    36. Maffezzoni, P., Bahr, B., Zhang, Z. & Daniel, L. Oscillator array models for associative
    memory and pattern recognition. IEEE Trans. Circuits Syst. I 62 , 1591–1598 (2015).
    37. Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators.
    Nature 563 , 230–234 (2018).
    38. Mahmoodi, M., Prezioso, M. & Strukov, D. Versatile stochastic dot product circuits based
    on nonvolatile memories for high performance neurocomputing and neurooptimization.
    Nat. Commun. 10 , 5113 (2019).
    39. Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor
    Hopfield neural networks. Nat. Electron. 3 , 409–418 (2020).
    40. Huang, A., Kantor, R., DeLong, A., Schreier, L. & Istrail, S. QColors: an algorithm for
    conservative viral quasispecies reconstruction from short and non-contiguous next
    generation sequencing reads. In Silico Biol. 11 , 193–201 (2011).
    41. Pang, J. et al. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel
    coronavirus (2019-nCoV): a systematic review. J. Clin. Med. 9 , 623 (2020).
    42. Mangul, S. et al. Accurate viral population assembly from ultra-deep sequencing data.
    Bioinformatics 30 , i329–i337 (2014).
    43. Hamerly, R. et al. Experimental investigation of performance differences between
    coherent Ising machines and a quantum annealer. Sci. Adv. 5 , eaau0823 (2019).
    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
    published maps and institutional affiliations.
    © The Author(s), under exclusive licence to Springer Nature Limited 2020

Free download pdf