Nature - USA (2020-09-24)

(Antfer) #1

544 | Nature | Vol 585 | 24 September 2020


Article



  1. Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise.
    Nature 526 , 421–425 (2015).

  2. Winkelmann, R., Levermann, A., Ridgwell, A. & Caldeira, K. Combustion of available
    fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. Sci. Adv. 1 ,
    e1500589 (2015).

  3. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the
    Greenland ice sheet. Nat. Clim. Chang. 2 , 429–432 (2012).

  4. Huybrechts, P. Formation and disintegration of the Antarctic ice sheet. Ann. Glaciol. 20 ,
    336–340 (1994).

  5. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise.
    Nature 531 , 591–597 (2016).

  6. Sutter, J., Gierz, P., Grosfeld, K., Thoma, M. & Lohmann, G. Ocean temperature
    thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophys. Res. Lett.
    43 , 2675–2682 (2016).

  7. Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet
    most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44 , 2343–2351
    (2017).

  8. Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat.
    Clim. Chang. 8 , 1053–1061 (2018).

  9. Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse
    through the past five million years. Nature 458 , 329–332 (2009).

  10. Alley, R. B. et al. Oceanic forcing of ice-sheet retreat: West Antarctica and more. Annu.
    Rev. Earth Planet. Sci. 43 , 207–231 (2015).

  11. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods.
    Science 349 , aaa4019 (2015).

  12. Pollard, D. & DeConto, R. M. Hysteresis in Cenozoic Antarctic ice-sheet variations. Glob.
    Planet. Change 45 , 9–21 (2005).

  13. Gasson, E. G. W., DeConto, R. M., Pollard, D. & Levy, R. Dynamic Antarctic ice sheet during
    the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113 , 3459–3464 (2016).

  14. Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323 ,
    1187–1190 (2009).

  15. Hansen, J., Sato, M., Russell, G. & Kharecha, P. Climate sensitivity, sea level and
    atmospheric carbon dioxide. Phil. Trans. R. Soc. A 371 , 20120294 (2013).

  16. Rahmstorf, S. & England, M. H. Influence of Southern Hemisphere winds on North Atlantic
    Deep Water flow. J. Phys. Oceanogr. 27 , 2040–2054 (1997).

  17. Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the Antarctic
    Ice Sheet with the Parallel Ice Sheet Model (PISM)—Part 1: Boundary conditions and
    climatic forcing. Cryosphere 14 , 599–632 (2020).
    38. Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of
    Antarctic waters. Science 346 , 1227–1231 (2014).
    39. Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the
    Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett.
    41 , 1576–1584 (2014).
    40. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid
    grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West
    Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41 , 3502–3509 (2014).
    41. Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability.
    Nat. Clim. Chang. 4 , 117–121 (2014).
    42. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for
    the Thwaites Glacier Basin, West Antarctica. Science 344 , 735–738 (2014).
    43. Naish, T. R. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature
    458 , 322–328 (2009).
    44. Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc.
    Natl Acad. Sci. USA 110 , 13745–13750 (2013).
    45. Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica.
    Nat. Clim. Chang. 4 , 451–455 (2014).
    46. Golledge, N. R. et al. Antarctic climate and ice-sheet configuration during the early
    Pliocene interglacial at 4.23 Ma. Clim. Past 13 , 959–975 (2017).
    47. Golledge, N. R. et al. Global environmental consequences of twenty-first-century
    ice-sheet melt. Nature 566 , 65–72 (2019).
    48. Bassis, J. N. & Walker, C. C. Upper and lower limits on the stability of calving glaciers from
    the yield strength envelope of ice. Proc. R. Soc. A 468 , 913–931 (2012).
    49. Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature
    566 , 58–64 (2019).
    50. Meredith, M. et al. Polar regions. In IPCC Special Report on the Ocean and Cryosphere in a
    Changing Climate (eds Pörtner, H.-O. et al.) https://www.ipcc.ch/srocc/chapter/
    chapter-3-2/ (in the press).
    51. Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was
    agreed in Paris. Nat. Clim. Chang. 6 , 649–653 (2016).
    52. Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575 ,
    592–595 (2019).


Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2020
Free download pdf