Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

Solving quadratic equations 107


Problem 18. Solvex^2 + 2 x− 8 =0byusingthe
quadratic formula

Comparing x^2 + 2 x− 8 =0 with ax^2 +bx+c= 0
givesa= 1 ,b=2andc=−8.
Substituting these values into the quadratic formula


x=
−b±


b^2 − 4 ac
2 a

gives


x=

− 2 ±


22 − 4 ( 1 )(− 8 )
2 ( 1 )

=

− 2 ±


4 + 32
2

=

− 2 ±


36
2

=

− 2 ± 6
2

=

− 2 + 6
2

or

− 2 − 6
2

Hence,x=


4
2

or

− 8
2

,i.e.x= 2 orx=− 4.

Problem 19. Solve 3x^2 − 11 x− 4 =0byusing
the quadratic formula

Comparing 3x^2 − 11 x− 4 =0 withax^2 +bx+c= 0
givesa= 3 ,b=−11 andc=−4. Hence,


x=

−(− 11 )±


(− 11 )^2 − 4 ( 3 )(− 4 )
2 ( 3 )

=

+ 11 ±


121 + 48
6

=

11 ±


169
6

=

11 ± 13
6

=

11 + 13
6

or

11 − 13
6

Hence,x=


24
6

or

− 2
6

,i.e.x= 4 orx=−

1
3

Problem 20. Solve 4x^2 + 7 x+ 2 =0givingthe
roots correct to 2 decimal places

Comparing 4x^2 + 7 x+ 2 =0 withax^2 +bx+cgives
a= 4 ,b=7andc=2. Hence,


x=

− 7 ±


72 − 4 ( 4 )( 2 )
2 ( 4 )

=

− 7 ±


17
8

=

− 7 ± 4. 123
8

=

− 7 + 4. 123
8

or

− 7 − 4. 123
8

Hence, x=− 0. 36 or − 1. 39 , correct to 2 decimal
places.

Problem 21. Use the quadratic formula to solve
x+ 2
4

+

3
x− 1

=7 correct to 4 significant figures

Multiplying throughout by 4(x− 1 )gives

4 (x− 1 )

(x+ 2 )
4

+ 4 (x− 1 )

3
(x− 1 )

= 4 (x− 1 )( 7 )

Cancelling gives (x− 1 )(x+ 2 )+( 4 )( 3 )= 28 (x− 1 )
x^2 +x− 2 + 12 = 28 x− 28

Hence, x^2 − 27 x+ 38 = 0

Using the quadratic formula,

x=
−(− 27 )±


(− 27 )^2 − 4 ( 1 )( 38 )
2

=

27 ±


577
2

=

27 ± 24. 0208
2

Hence, x=

27 + 24. 0208
2

= 25. 5104

or x=

27 − 24. 0208
2

= 1. 4896

Hence,x= 25. 51 or 1. 490 , correct to 4 significant
figures.

Now try the following Practice Exercise

PracticeExercise 56 Solving quadratic
equations by formula (answers on page 346)
Solve the following equations by using the
quadratic formula, correct to 3 decimal places.


  1. 2x^2 + 5 x− 4 = 0



    1. 76 x^2 + 2. 86 x− 1. 35 = 0



  2. 2x^2 − 7 x+ 4 = 0

  3. 4x+ 5 =


3
x


  1. ( 2 x+ 1 )=


5
x− 3


  1. 3x^2 − 5 x+ 1 = 0

Free download pdf