Solving quadratic equations 107
Problem 18. Solvex^2 + 2 x− 8 =0byusingthe
quadratic formula
Comparing x^2 + 2 x− 8 =0 with ax^2 +bx+c= 0
givesa= 1 ,b=2andc=−8.
Substituting these values into the quadratic formula
x=
−b±
√
b^2 − 4 ac
2 a
gives
x=
− 2 ±
√
22 − 4 ( 1 )(− 8 )
2 ( 1 )
=
− 2 ±
√
4 + 32
2
=
− 2 ±
√
36
2
=
− 2 ± 6
2
=
− 2 + 6
2
or
− 2 − 6
2
Hence,x=
4
2
or
− 8
2
,i.e.x= 2 orx=− 4.
Problem 19. Solve 3x^2 − 11 x− 4 =0byusing
the quadratic formula
Comparing 3x^2 − 11 x− 4 =0 withax^2 +bx+c= 0
givesa= 3 ,b=−11 andc=−4. Hence,
x=
−(− 11 )±
√
(− 11 )^2 − 4 ( 3 )(− 4 )
2 ( 3 )
=
+ 11 ±
√
121 + 48
6
=
11 ±
√
169
6
=
11 ± 13
6
=
11 + 13
6
or
11 − 13
6
Hence,x=
24
6
or
− 2
6
,i.e.x= 4 orx=−
1
3
Problem 20. Solve 4x^2 + 7 x+ 2 =0givingthe
roots correct to 2 decimal places
Comparing 4x^2 + 7 x+ 2 =0 withax^2 +bx+cgives
a= 4 ,b=7andc=2. Hence,
x=
− 7 ±
√
72 − 4 ( 4 )( 2 )
2 ( 4 )
=
− 7 ±
√
17
8
=
− 7 ± 4. 123
8
=
− 7 + 4. 123
8
or
− 7 − 4. 123
8
Hence, x=− 0. 36 or − 1. 39 , correct to 2 decimal
places.
Problem 21. Use the quadratic formula to solve
x+ 2
4
+
3
x− 1
=7 correct to 4 significant figures
Multiplying throughout by 4(x− 1 )gives
4 (x− 1 )
(x+ 2 )
4
+ 4 (x− 1 )
3
(x− 1 )
= 4 (x− 1 )( 7 )
Cancelling gives (x− 1 )(x+ 2 )+( 4 )( 3 )= 28 (x− 1 )
x^2 +x− 2 + 12 = 28 x− 28
Hence, x^2 − 27 x+ 38 = 0
Using the quadratic formula,
x=
−(− 27 )±
√
(− 27 )^2 − 4 ( 1 )( 38 )
2
=
27 ±
√
577
2
=
27 ± 24. 0208
2
Hence, x=
27 + 24. 0208
2
= 25. 5104
or x=
27 − 24. 0208
2
= 1. 4896
Hence,x= 25. 51 or 1. 490 , correct to 4 significant
figures.
Now try the following Practice Exercise
PracticeExercise 56 Solving quadratic
equations by formula (answers on page 346)
Solve the following equations by using the
quadratic formula, correct to 3 decimal places.
- 2x^2 + 5 x− 4 = 0
- 76 x^2 + 2. 86 x− 1. 35 = 0
- 2x^2 − 7 x+ 4 = 0
- 4x+ 5 =
3
x
- ( 2 x+ 1 )=
5
x− 3
- 3x^2 − 5 x+ 1 = 0