Logarithms 117
y
0.5
0 123
2 0.5
2 1.0
x
x 3
0.48
2
0.30
1
0
0.5
2 0.30
0.2
2 0.70
0.1
y 5 log 10 x 2 1.0
Figure 15.1
Hence,logaa= 1. (Check with a calculator that
log 1010 =1andlogee=1.)
(c) loga 0 →−∞
Let loga 0 =xthenax=0 from the definition of a
logarithm.
y
2
1
0 123456 x
x 6 5 4 3 2 1 0.5 0.2 0.1
1.79 1.61 1.39 1.10 0.69 0 2 0.69 2 1.61 2 2.30
21
22
y 5 logex
Figure 15.2
Ifax=0, and a is a positive real number, then
x must approach minus infinity. (For example,
check with a calculator, 2−^2 = 0. 25 , 2 −^20 =
9. 54 × 10 −^7 , 2 −^200 = 6. 22 × 10 −^61 , and so on.)
Hence,loga 0 →−∞