120 Basic Engineering Mathematics
From equation (1),
ex= 1 +x+
x^2
2!
+
x^3
3!
+
x^4
4!
+···
Hence, e^0.^5 = 1 + 0. 5 +
( 0. 5 )^2
( 2 )( 1 )
+
( 0. 5 )^3
( 3 )( 2 )( 1 )
+
( 0. 5 )^4
( 4 )( 3 )( 2 )( 1 )
+
( 0. 5 )^5
( 5 )( 4 )( 3 )( 2 )( 1 )
+
( 0. 5 )^6
( 6 )( 5 )( 4 )( 3 )( 2 )( 1 )
= 1 + 0. 5 + 0. 125 + 0. 020833
+ 0. 0026042 + 0. 0002604
+ 0. 0000217
i.e. e^0.^5 = 1. 64872 ,correct to 6 significant
figures
Hence, 5 e^0.^5 = 5 ( 1. 64872 )=8.2436,correct to 5
significant figures.
Problem 5. Determine the value of 3e−^1 , correct
to 4 decimal places, using the power series forex
Substitutingx=−1inthepowerseries
ex= 1 +x+
x^2
2!
+
x^3
3!
+
x^4
4!
+···
gives e−^1 = 1 +(− 1 )+
(− 1 )^2
2!
+
(− 1 )^3
3!
+
(− 1 )^4
4!
+···
= 1 − 1 + 0. 5 − 0. 166667 + 0. 041667
− 0. 008333 + 0. 001389
− 0. 000198 +···
= 0 .367858 correct to 6 decimal places
Hence, 3 e−^1 =( 3 )( 0. 367858 )=1.1036, correct to 4
decimal places.
Problem 6. Expandex(x^2 − 1 )as far as the term
inx^5
The power series forexis
ex= 1 +x+
x^2
2!
+
x^3
3!
+
x^4
4!
+
x^5
5!
+···
Hence,
ex(x^2 − 1 )
=
(
1 +x+
x^2
2!
+
x^3
3!
+
x^4
4!
+
x^5
5!
+···
)
(x^2 − 1 )
=
(
x^2 +x^3 +
x^4
2!
+
x^5
3!
+···
)
−
(
1 +x+
x^2
2!
+
x^3
3!
+
x^4
4!
+
x^5
5!
+···
)
Grouping like terms gives
ex(x^2 − 1 )
=− 1 −x+
(
x^2 −
x^2
2!
)
+
(
x^3 −
x^3
3!
)
+
(
x^4
2!
−
x^4
4!
)
+
(
x^5
3!
−
x^5
5!
)
+···
=− 1 −x+
1
2
x^2 +
5
6
x^3 +
11
24
x^4 +
19
120
x^5
when expanded as far as the term inx^5.
Now try the following Practice Exercise
PracticeExercise 63 Power series forex
(answers on page 347)
- Evaluate 5. 6 e−^1 , correct to 4 decimal places,
using the power series forex. - Use the power series forextodetermine, cor-
rect to 4 significant figures, (a)e^2 (b)e−^0.^3
and check your results using a calculator. - Expand (1− 2 x)e^2 xas far as the term inx^4.
- Expand (2ex
2
)(x^1 /^2 ) to six terms.
16.3 Graphs of exponential functions
Values ofexande−xobtained from a calculator, correct
to 2 decimal places, over a rangex=−3tox=3, are
shown in Table 16.1.