Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

120 Basic Engineering Mathematics


From equation (1),

ex= 1 +x+

x^2
2!

+

x^3
3!

+

x^4
4!

+···

Hence, e^0.^5 = 1 + 0. 5 +

( 0. 5 )^2
( 2 )( 1 )

+

( 0. 5 )^3
( 3 )( 2 )( 1 )

+

( 0. 5 )^4
( 4 )( 3 )( 2 )( 1 )

+

( 0. 5 )^5
( 5 )( 4 )( 3 )( 2 )( 1 )

+

( 0. 5 )^6
( 6 )( 5 )( 4 )( 3 )( 2 )( 1 )
= 1 + 0. 5 + 0. 125 + 0. 020833
+ 0. 0026042 + 0. 0002604
+ 0. 0000217

i.e. e^0.^5 = 1. 64872 ,correct to 6 significant
figures
Hence, 5 e^0.^5 = 5 ( 1. 64872 )=8.2436,correct to 5
significant figures.

Problem 5. Determine the value of 3e−^1 , correct
to 4 decimal places, using the power series forex

Substitutingx=−1inthepowerseries

ex= 1 +x+

x^2
2!

+

x^3
3!

+

x^4
4!

+···

gives e−^1 = 1 +(− 1 )+

(− 1 )^2
2!

+

(− 1 )^3
3!

+

(− 1 )^4
4!

+···

= 1 − 1 + 0. 5 − 0. 166667 + 0. 041667
− 0. 008333 + 0. 001389
− 0. 000198 +···
= 0 .367858 correct to 6 decimal places

Hence, 3 e−^1 =( 3 )( 0. 367858 )=1.1036, correct to 4
decimal places.

Problem 6. Expandex(x^2 − 1 )as far as the term
inx^5

The power series forexis

ex= 1 +x+

x^2
2!

+

x^3
3!

+

x^4
4!

+

x^5
5!

+···

Hence,

ex(x^2 − 1 )

=

(
1 +x+

x^2
2!

+

x^3
3!

+

x^4
4!

+

x^5
5!

+···

)
(x^2 − 1 )

=

(
x^2 +x^3 +

x^4
2!

+

x^5
3!

+···

)


(
1 +x+

x^2
2!

+

x^3
3!

+

x^4
4!

+

x^5
5!

+···

)

Grouping like terms gives

ex(x^2 − 1 )

=− 1 −x+

(
x^2 −

x^2
2!

)
+

(
x^3 −

x^3
3!

)

+

(
x^4
2!


x^4
4!

)
+

(
x^5
3!


x^5
5!

)
+···

=− 1 −x+

1
2

x^2 +

5
6

x^3 +

11
24

x^4 +

19
120

x^5

when expanded as far as the term inx^5.

Now try the following Practice Exercise

PracticeExercise 63 Power series forex
(answers on page 347)


  1. Evaluate 5. 6 e−^1 , correct to 4 decimal places,
    using the power series forex.

  2. Use the power series forextodetermine, cor-
    rect to 4 significant figures, (a)e^2 (b)e−^0.^3
    and check your results using a calculator.

  3. Expand (1− 2 x)e^2 xas far as the term inx^4.

  4. Expand (2ex


2
)(x^1 /^2 ) to six terms.

16.3 Graphs of exponential functions


Values ofexande−xobtained from a calculator, correct
to 2 decimal places, over a rangex=−3tox=3, are
shown in Table 16.1.
Free download pdf