152 Basic Engineering Mathematics
From para (a), page 150, if T=kLnthen lgT=nlgL+lgk
and comparing with Y=mX+cshows that lgTis plotted vertically against lgLhor-
izontally, with gradientnand vertical-axis intercept
lgk.
A table of values for lgTand lgLis drawn up as shown
below.T 1.0 1.3 1.5 1.8 2.0 2.3lgT 0 0. 114 0. 176 0. 2550. 301 0. 362L 0.25 0.42 0.56 0.81 1.0 1.32lgL− 0. 602 − 0. 377 − 0. 252 − 0. 0920 0. 121A graph of lgTagainst lgLis shown in Figure 18.5 and
thelawT=kLnis true since a straight line results.AC B2 0.60 2 0.50 2 0.40 2 0.30 2 0.20 0 0.200.100.200.300.250.05lg Llg T0.402 0.10 0.10Figure 18.5From the graph, gradient of straight line,n=AB
BC=0. 25 − 0. 05
− 0. 10 −(− 0. 50 )=0. 20
0. 40=1
2
Vertical axis intercept, lgk= 0 .30. Hence,
k=antilog 0. 30 = 100.^30 =2.0Hence,the law of the graph isT= 2. 0 L^1 /^2 or
T= 2. 0√
L.
When lengthL= 0 .75m,T= 2. 0√
0. 75 = 1 .73sProblem 6. Quantitiesxandyare believed to be
related by a law of the formy=abx,whereaandb
are constants. The values ofxand corresponding
values ofyarex 0 0.6 1.2 1.8 2.4 3.0y 5.0 9.67 18.736.1 69.8135.0Verify the law and determine the approximate
values ofaandb. Hence determine (a) the value of
ywhenxis 2.1 and (b) the value ofxwhenyis 100From para (b), page 150, if y=abxthen lgy=(lgb)x+lgaand comparing with Y=mX+cshows that lgyis plotted vertically andxhorizontally,
with gradient lgband vertical-axis intercept lga.
Another table is drawn up as shown below.x 0 0.6 1.2 1.8 2.4 3.0y 5. 0 9. 67 18. 7 36. 1 69. 8 135. 0lgy 0. 70 0. 99 1. 27 1. 56 1. 84 2. 13A graph of lgy againstx is shown in Figure 18.6
and,since a straight line results, the lawy=abxis
verified.CBAlgyx2.502.13
2.001.501.001.170.50
0 1.0 2.0 3.00.70Figure 18.6