Graphical solution of equations 159
10 8 6 4 20.6y 5 x 2 9 x7.20.9 2.4 1 0 12324681011.2512yxFigure 19.10
y 2 x^2y 8yx3 2 10246810
ACDBy1 1.5 2 xFigure 19.11
Problem 6. Plot the graph ofy=− 2 x^2 + 3 x+ 6
for values ofxfromx=−2tox=4. Use the
graph to find the roots of the following equations.
(a) − 2 x^2 + 3 x+ 6 =0(b)− 2 x^2 + 3 x+ 2 = 0
(c) − 2 x^2 + 3 x+ 9 =0(d)− 2 x^2 +x+ 5 = 0A table of values fory=− 2 x^2 + 3 x+6isdrawnupas
shown below.
x − 2 − 1 0 1 2 3 4y − 8 1 6 7 4 − 3 − 14A graph of y=− 2 x^2 + 3 x+6isshownin
Figure 19.12.282624222 1.35 2 1.1322
2 1.5 GA BC DHF y^523y 54y 52 x 11y 522 x^213 x 16xE12
1.85 2.63(^03)
2
4
6
8
y
212 0.5
Figure 19.12
(a) The parabolay=− 2 x^2 + 3 x+6 and the straight
liney=0 intersect atAandB,wherex=− 1. 13
and x= 2. 63 , and these are the roots of the
equation− 2 x^2 + 3 x+ 6 =0.
(b) Comparing y=− 2 x^2 + 3 x+6(1)
with 0 =− 2 x^2 + 3 x+2(2)
shows that, if 4 is added to both sides of
equation (2), the RHS of both equations will
be the same. Hence, 4=− 2 x^2 + 3 x+6. The
solution of this equation is found from the
points of intersection of the line y=4and
the parabola y=− 2 x^2 + 3 x+6; i.e., pointsC
and D in Figure 19.12. Hence, the roots of
− 2 x^2 + 3 x+ 2 =0arex=− 0. 5 andx= 2.
(c) − 2 x^2 + 3 x+ 9 =0 may be rearranged as
− 2 x^2 + 3 x+ 6 =−3 and the solution of
this equation is obtained from the points
of intersection of the line y=−3andthe
parabola y=− 2 x^2 + 3 x+6; i.e., at points E
and F in Figure 19.12. Hence, the roots of
− 2 x^2 + 3 x+ 9 =0arex=− 1. 5 andx= 3.