Angles and triangles 169
Problem 13. Determine angleβin Figure 20.7
1338
Figure 20.7
α= 180 ◦− 133 ◦= 47 ◦(i.e. supplementary angles).
α=β= 47 ◦(corresponding angles between parallel
lines).
Problem 14. Determine the value of angleθin
Figure 20.8
23 37
35 49
A
F
C
B
G
E
D
Figure 20.8
Let a straight lineFGbe drawn throughEsuch thatFG
is parallel toABandCD.
∠BAE=∠AEF(alternate angles between parallel lines
ABandFG), hence∠AEF= 23 ◦ 37 ′.
∠ECD=∠FEC(alternateanglesbetweenparallellines
FGandCD), hence∠FEC= 35 ◦ 49 ′.
Angleθ=∠AEF+∠FEC= 23 ◦ 37 ′+ 35 ◦ 49 ′
= 59 ◦ 26 ′
Problem 15. Determine anglescanddin
Figure 20.9
d
b a
c
468
Figure 20.9
a=b= 46 ◦ (corresponding angles between parallel
lines).
Also,b+c+ 90 ◦= 180 ◦(angles on a straight line).
Hence, 46◦+c+ 90 ◦= 180 ◦, from which,c= 44 ◦.
banddare supplementary, henced= 180 ◦− 46 ◦
= 134 ◦.
Alternatively, 90◦+c=d(vertically opposite angles).
Problem 16. Convert the following angles to
radians, correct to 3 decimal places.
(a) 73◦(b) 25◦ 37 ′
Althoughwemaybemorefamiliarwithdegrees,radians
is the SI unit of angular measurement in engineering
(1radian≈ 57. 3 ◦).
(a) Since 180◦=πradthen1◦=
π
180
rad.
Hence, 73 ◦= 73 ×
π
180
rad= 1 .274 rad.
(b) 25◦ 37 ′= 25
37 ◦
60
= 25. 616666 ...
Hence, 25 ◦ 37 ′= 25. 616666 ...◦
= 25. 616666 ...×
π
180
rad
= 0 .447 rad.
Problem 17. Convert 0.743 rad to degrees and
minutes
Since 180◦=πradthen1rad=
180 ◦
π
Hence, 0 .743 rad= 0. 743 ×
180 ◦
π
= 42. 57076 ...◦
= 42 ◦ 34 ′
Sinceπ rad= 180 ◦,then
π
2
rad= 90 ◦,
π
4
rad= 45 ◦,
π
3
rad= 60 ◦and
π
6
rad= 30 ◦
Now try the following Practice Exercise
PracticeExercise 77 Further angular
measurement(answers on page 348)
- State the general name given to an angle of
197 ◦. - State the general name given to an angle of
136 ◦. - State the general name given to an angle of
49 ◦.