Angles and triangles 173
62
15
A
B D
E
C
Figure 20.23
In triangleABC,∠A+∠B+∠C= 180 ◦(the angles in
a triangle add up to 180◦).
Hence,∠C= 180 ◦− 90 ◦− 62 ◦= 28 ◦. Thus,
∠DCE= 28 ◦(vertically opposite angles).
θ=∠DCE+∠DEC(the exterior angle of a triangle is
equal to the sum of the two opposite interior angles).
Hence,∠θ= 28 ◦+ 15 ◦= 43 ◦.
∠αand∠DECare supplementary; thus,
α= 180 ◦− 15 ◦= 165 ◦.
Problem 22. ABCis an isosceles triangle in
which the unequal angleBACis 56◦.ABis extended
toDas shown in Figure 20.24. Find, for the
triangle,∠ABCand∠ACB. Also, calculate∠DBC
568
A
B C
D
Figure 20.24
Since triangleABCis isosceles, two sides – i.e.ABand
AC– are equal and two angles – i.e.∠ABCand∠ACB–
are equal.
The sum of the three angles of a triangle is equal to 180◦.
Hence,∠ABC+∠ACB= 180 ◦− 56 ◦= 124 ◦.
Since∠ABC=∠ACBthen
∠ABC=∠ACB=
124 ◦
2
= 62 ◦.
An angle of 180◦lies on a straight line; hence,
∠ABC+∠DBC= 180 ◦from which,
∠DBC= 180 ◦−∠ABC= 180 ◦− 62 ◦= 118 ◦.
Alternatively, ∠DBC=∠A+∠C (exterior angle
equals sum of two interior opposite angles),
i.e.∠DBC= 56 ◦+ 62 ◦= 118 ◦.
Problem 23. Find anglesa,b,c,dandein
Figure 20.25
558
628
e b
d c
a
Figure 20.25
a= 62 ◦andc= 55 ◦(alternate angles between parallel
lines).
55 ◦+b+ 62 ◦= 180 ◦(angles in a triangle add up to
180 ◦); hence,b= 180 ◦− 55 ◦− 62 ◦= 63 ◦.
b=d= 63 ◦(alternate angles between parallel lines).
e+ 55 ◦+ 63 ◦= 180 ◦(angles in a triangle add up to
180 ◦); hence,e= 180 ◦− 55 ◦− 63 ◦= 62 ◦.
Check: e=a= 62 ◦ (corresponding angles between
parallel lines).
Now try the following Practice Exercise
PracticeExercise 78 Triangles (answerson
page 348)
- Namethetypesoftriangleshownindiagrams
(a) to (f) in Figure 20.26.
(a) (b)
(e) (f)
(c)
81 15
48
66
45
45
(d)
97
39
60
5 5
53
37
Figure 20.26