Introduction to trigonometry 187
Problem 16. In triangleEFGin Figure 21.16,
calculate angleG
E
F G
2.30cm
8.71cm
Figure 21.16
Withreference to∠G, the twosides of the trianglegiven
are the oppositesideEFand the hypotenuseEG; hence,
sine is used,
i.e. sinG=
2. 30
8. 71
= 0. 26406429 ...
from which, G=sin−^10. 26406429 ...
i.e. G= 15. 311360 ◦
Hence, ∠G= 15. 31 ◦or 15 ◦ 19 ′.
Problem 17. Evaluate the following expression,
correct to 3 significant figures
4 .2tan49◦ 26 ′− 3 .7sin66◦ 1 ′
7 .1cos29◦ 34 ′
By calculator:
tan49◦ 26 ′=tan
(
49
26
60
)◦
= 1. 1681 ,
sin66◦ 1 ′= 0 .9137 and cos29◦ 34 ′= 0. 8698
Hence,^4 .2tan49
◦ 26 ′− 3 .7sin66◦ 1 ′
7 .1cos29◦ 34 ′
=
( 4. 2 × 1. 1681 )−( 3. 7 × 0. 9137 )
( 7. 1 × 0. 8698 )
=
4. 9060 − 3. 3807
6. 1756
=
1. 5253
6. 1756
= 0. 2470 =0.247,
correct to 3 significant figures.
Now try the following Practice Exercise
PracticeExercise 84 Evaluating
trigonometric ratios (answers on page 349)
- Determine, correct to 4 decimal places,
3sin66◦ 41 ′.
2. Determine, correct to 3 decimal places,
5cos14◦ 15 ′.
3. Determine, correct to 4 significant figures,
7tan79◦ 9 ′.
4. Determine
(a) sine
2 π
3
(b) cos1.681 (c) tan3. 672
- Find the acute angle sin−^10 .6734 in degrees,
correct to 2 decimal places. - Findthe acute angle cos−^10 .9648 indegrees,
correct to 2 decimal places. - Find the acute angle tan−^13 .4385 in degrees,
correct to 2 decimal places. - Find the acute angle sin−^10 .1381 in degrees
and minutes. - Find the acute angle cos−^10 .8539 in degrees
and minutes. - Find the acute angle tan−^10 .8971 in degrees
and minutes. - In the triangle shown in Figure 21.17, deter-
mine angleθ, correct to 2 decimal places.
5
9
Figure 21.17
- In the triangle shown in Figure 21.18, deter-
mine angleθin degrees and minutes.
8
23
Figure 21.18