Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

Introduction to trigonometry 187


Problem 16. In triangleEFGin Figure 21.16,
calculate angleG
E

F G

2.30cm

8.71cm

Figure 21.16

Withreference to∠G, the twosides of the trianglegiven
are the oppositesideEFand the hypotenuseEG; hence,
sine is used,


i.e. sinG=


2. 30
8. 71

= 0. 26406429 ...

from which, G=sin−^10. 26406429 ...


i.e. G= 15. 311360 ◦


Hence, ∠G= 15. 31 ◦or 15 ◦ 19 ′.


Problem 17. Evaluate the following expression,
correct to 3 significant figures

4 .2tan49◦ 26 ′− 3 .7sin66◦ 1 ′
7 .1cos29◦ 34 ′

By calculator:


tan49◦ 26 ′=tan

(
49

26
60

)◦
= 1. 1681 ,

sin66◦ 1 ′= 0 .9137 and cos29◦ 34 ′= 0. 8698

Hence,^4 .2tan49
◦ 26 ′− 3 .7sin66◦ 1 ′
7 .1cos29◦ 34 ′


=

( 4. 2 × 1. 1681 )−( 3. 7 × 0. 9137 )
( 7. 1 × 0. 8698 )

=

4. 9060 − 3. 3807
6. 1756

=

1. 5253
6. 1756
= 0. 2470 =0.247,
correct to 3 significant figures.

Now try the following Practice Exercise


PracticeExercise 84 Evaluating
trigonometric ratios (answers on page 349)


  1. Determine, correct to 4 decimal places,
    3sin66◦ 41 ′.
    2. Determine, correct to 3 decimal places,
    5cos14◦ 15 ′.
    3. Determine, correct to 4 significant figures,
    7tan79◦ 9 ′.
    4. Determine


(a) sine

2 π
3

(b) cos1.681 (c) tan3. 672


  1. Find the acute angle sin−^10 .6734 in degrees,
    correct to 2 decimal places.

  2. Findthe acute angle cos−^10 .9648 indegrees,
    correct to 2 decimal places.

  3. Find the acute angle tan−^13 .4385 in degrees,
    correct to 2 decimal places.

  4. Find the acute angle sin−^10 .1381 in degrees
    and minutes.

  5. Find the acute angle cos−^10 .8539 in degrees
    and minutes.

  6. Find the acute angle tan−^10 .8971 in degrees
    and minutes.

  7. In the triangle shown in Figure 21.17, deter-
    mine angleθ, correct to 2 decimal places.




5

9
Figure 21.17


  1. In the triangle shown in Figure 21.18, deter-
    mine angleθin degrees and minutes.




8

23

Figure 21.18
Free download pdf