Areas of common shapes 223
Area of rectangle=l×b= 7. 0 × 4. 5
= 31 .5cm^2Perimeter of rectangle= 7 .0cm+ 4 .5cm
+ 7 .0cm+ 4 .5cm
=23.0cmProblem 4. Calculate the area of the
parallelogram shown in Figure 25.1121 mm16 mmH GEF9mmFigure 25.11Area of a parallelogram=base×perpendicular height
The perpendicular heighthis not shown in Figure 25.11
but may be found using Pythagoras’ theorem (see
Chapter 21).
From Figure 25.12, 9^2 = 52 +h^2 , from which
h^2 = 92 − 52 = 81 − 25 =56.
Hence, perpendicular height,
h=√
56 = 7 .48mm.9mmEGhFH
16 mm 5 mmFigure 25.12
Hence,area of parallelogramEFGH
=16mm× 7 .48mm
=120mm^2.Problem 5. Calculate the area of the triangle
shown in Figure 25.13IKJ5.68 cm1.92 cmFigure 25.13Area of triangleIJK=1
2×base×perpendicular height=1
2×IJ×JKTo findJK, Pythagoras’ theorem is used; i.e.,
5. 682 = 1. 922 +JK^2 ,from whichJK=√
5. 682 − 1. 922 = 5 .346cmHence,area of triangleIJK=1
2× 1. 92 × 5. 346=5.132cm^2.Problem 6. Calculate the area of the trapezium
shown in Figure 25.14
27.4 mm8.6 mm5.5 mmFigure 25.14Area of a trapezium=1
2×(sum of parallel sides)×(perpendicular distance
between the parallel sides)Hence,area of trapeziumLMNO=1
2×( 27. 4 + 8. 6 )× 5. 5=1
2× 36 × 5. 5 =99mm^2