Powers, roots and laws of indices 51
Problem 17. Find the value of
23 × 35 ×( 72 )^2
74 × 24 × 33
23 × 35 ×( 72 )^2
74 × 24 × 33
= 23 −^4 × 35 −^3 × 72 ×^2 −^4
= 2 −^1 × 32 × 70
=
1
2
× 32 × 1 =
9
2
= 4
1
2
Problem 18. Evaluate
41.^5 × 81 /^3
22 × 32 −^2 /^5
41.^5 = 43 /^2 =
√
43 = 23 = 8 , 81 /^3 =
√ 3
8 = 2 ,
22 = 4 , 32 −^2 /^5 =
1
322 /^5
=
1
√ 5
322
=
1
22
=
1
4
Hence,
41.^5 × 81 /^3
22 × 32 −^2 /^5
=
8 × 2
4 ×
1
4
=
16
1
= 16
Alternatively,
41.^5 × 81 /^3
22 × 32 −^2 /^5
=
[( 2 )^2 ]^3 /^2 ×( 23 )^1 /^3
22 ×( 25 )−^2 /^5
=
23 × 21
22 × 2 −^2
= 23 +^1 −^2 −(−^2 )= 24 = 16
Problem 19. Evaluate
32 × 55 + 33 × 53
34 × 54
Dividing each termby theHCF (highest common factor)
of the three terms, i.e. 3^2 × 53 ,gives
32 × 55 + 33 × 53
34 × 54
=
32 × 55
32 × 53
+
33 × 53
32 × 53
34 × 54
32 × 53
=
3 (^2 −^2 )× 5 (^5 −^3 )+ 3 (^3 −^2 )× 50
3 (^4 −^2 )× 5 (^4 −^3 )
=
30 × 52 + 31 × 50
32 × 51
=
1 × 25 + 3 × 1
9 × 5
=
28
45
Problem 20. Find the value of
32 × 55
34 × 54 + 33 × 53
To simplify the arithmetic, each term is divided by the
HCF of all the terms, i.e. 3^2 × 53. Thus,
32 × 55
34 × 54 + 33 × 53
=
32 × 55
32 × 53
34 × 54
32 × 53
+
33 × 53
32 × 53
=
3 (^2 −^2 )× 5 (^5 −^3 )
3 (^4 −^2 )× 5 (^4 −^3 )+ 3 (^3 −^2 )× 5 (^3 −^3 )
=
30 × 52
32 × 51 + 31 × 50
=
1 × 52
32 × 5 + 3 × 1
=
25
45 + 3
=
25
48
Problem 21. Simplify
7 −^3 × 34
3 −^2 × 75 × 5 −^2
expressing the answer in index form with positive
indices
Since 7−^3 =
1
73
,
1
3 −^2
= 32 and
1
5 −^2
= 52 ,then
7 −^3 × 34
3 −^2 × 75 × 5 −^2
=
34 × 32 × 52
73 × 75
=
3 (^4 +^2 )× 52
7 (^3 +^5 )
=
36 × 52
78
Problem 22. Simplify
162 × 9 −^2
4 × 33 − 2 −^3 × 82
expressing the answer in index form with positive
indices
Expressing the numbers in terms of their lowest prime
numbers gives
162 × 9 −^2
4 × 33 − 2 −^3 × 82
=
( 24 )^2 ×( 32 )−^2
22 × 33 − 2 −^3 ×( 23 )^2
=
28 × 3 −^4
22 × 33 − 2 −^3 × 26
=
28 × 3 −^4
22 × 33 − 23