66 Basic Engineering Mathematics
Using law (3) of indices givesd^2 e^2 f^1 /^2
(d^3 /^2 ef^5 /^2 )^2=d^2 e^2 f^1 /^2
d^3 e^2 f^5Using law (2) of indices givesd^2 −^3 e^2 −^2 f1
2 −^5 =d−^1 e^0 f−9
2=d−^1 f−9(^2) sincee^0 =1 from law
(6) of indices
1
df^9 /^2
from law (5) of indices
Now try the following Practice Exercise
PracticeExercise 37 Laws of indices
(answers on page 343)
In problems 1 to 18, simplify the following,giving
each answer as a power.
- z^2 ×z^6 2. a×a^2 ×a^5
- n^8 ×n−^5 4. b^4 ×b^7
- b^2 ÷b^5 6. c^5 ×c^3 ÷c^4
7.m^5 ×m^6
m^4 ×m^38.(x^2 )(x)
x^6
9.(
x^3) 4
10.(
y^2)− 311.(
t×t^3) 2
12.(
c−^7)− 213.(
a^2
a^5) 3
14.(
1
b^3) 415.(
b^2
b^7)− 2
16.1
(
s^3) 3- p^3 qr^2 ×p^2 q^5 r×pqr^2 18.
x^3 y^2 z
x^5 yz^3- Simplify(x^2 y^3 z)(x^3 yz^2 )and evaluate when
x=
1
2,y=2andz=3.- Simplify
a^5 bc^3
a^2 b^3 c^2and evaluate whena=3
2,b=1
2andc=2
3Here are some further worked examples on the laws of
indicesProblem 25. Simplifyp^1 /^2 q^2 r^2 /^3
p^1 /^4 q^1 /^2 r^1 /^6and evaluatewhenp= 16 ,q=9andr=4, taking positive roots
onlyUsing law (2) of indices givesp1
2 −1(^4) q^2 −
1
(^2) r
2
3 −
1
6
p
1
2 −
1
(^4) q^2 −
1
(^2) r
2
3 −
1
(^6) =p
1
(^4) q
3
(^2) r
1
2
Whenp= 16 ,q=9andr=4,
p
1
(^4) q
3
(^2) r
1
(^2) = 16
1
(^49)
3
(^24)
1
2
=(^4
√
16 )(
√
93 )(
√
4 )from law (4) of indices
=( 2 )( 33 )( 2 )= 108
Problem 26. Simplify
x^2 y^3 +xy^2
xy
Algebraic expressions of the form
a+b
c
can be split
into
a
c
- b
c
. Thus,
x^2 y^3 +xy^2
xy=x^2 y^3
xy+xy^2
xy=x^2 −^1 y^3 −^1 +x^1 −^1 y^2 −^1=xy^2 +y(sincex^0 =1,fromlaw(6)ofindices).Problem 27. Simplifyx^2 y
xy^2 −xyThe highest common factor (HCF) of each of the three
terms comprising the numerator and denominator isxy.
Dividing each term byxygivesx^2 y
xy^2 −xy=x^2 y
xy
xy^2
xy−xy
xy=x
y− 1Problem 28. Simplifya^2 b
ab^2 −a^1 /^2 b^3