Handbook of Plant and Crop Physiology

(Steven Felgate) #1

  1. B Schoefs, F Franck. Photosystem II assembly in 2-day-old bean leaves during the first 16 hrs of greening. C
    R Acad Sci Paris 313:441–445, 1991.

  2. F Franck, X Barthélemy, K Strzalka. Spectroscopic characterization of protochlorophyllide photoreduction in
    the greening leaf. Photosynthetica 29:185–194, 1993.

  3. F Franck, B Schoefs. Chlorophyll synthesis in relation to the assembly of photosystems. In: B Schoefs, F
    Franck, J Aghion, eds. Biology, Biochemistry and Molecular Biology of Photosynthesis. Bull Soc R Sci Liege
    65:269–278, 1996.

  4. F Franck, K Strzalka. Detection of photoactive protochlorophyllide-protein complex in the light during the
    greening of barley. FEBS Lett 309:73–77, 1992.

  5. N Lebedev, MP Timko. Protochlorophyllide photoreduction. Photosynth Res 58:5–23, 1998.

  6. R Schulz, H Senger. Protochlorophyllide reductase: a key enzyme in the greening process. In: M Ryberg, C
    Sundqvist, eds. Pigment-Protein Complexes in Plastids: Synthesis and Assembly. New York: Academic Press,
    1993, pp 179–218.

  7. G Mayer, H Bliedung, K Kloppstech. NADPH-protochlorophyllide oxidoreductase: reciprocal regulation in
    mono- and dicotyledonean plants. Plant Cell Rep 2:26–29, 1983.

  8. GA Armstrong, S Runge, G Frick, U Sperling, K Apel. Identification of NADPH:protochlorophyllide oxi-
    doreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis
    thaliana. Plant Physiol 108:1505–1517, 1995.

  9. H Holtorf, S Reinbothe, C Reinbothe, B Bereza, K Apel. Two routes of chlorophyllide synthesis that are dif-
    ferentially regulated by light in barley. Proc Natl Acad Sci U S A 92:3254–3258, 1995.

  10. JY Suzuki, CE Bauer. A prokaryotic origin for light-dependent chlorophyll biosynthesis of plant. Proc Natl
    Acad Sci U S A 92:3749–3753, 1995.

  11. J Li, MP Timko. The pc-1 phenotype of Chlamydomonas reinhardtiiresults from a deletion mutation in the nu-
    clear gene for NADPH:protochlorophyllide oxidoreductase. Plant Mol Biol 30:15–37, 1996.

  12. AJ Spano, ZH He, H Michel, DF Hunt, MP Timko. Molecular cloning, nuclear gene structure and develop-
    mental expression of NADPH:protochlorophyllide oxidoreductase in pea (Pisum sativumL.). Plant Mol Biol
    18:967–972, 1992.

  13. S Reinbothe, S Runge, C Reinbothe, B van Cleve, K Apel. Substrate-dependent transport of the NADPH:pro-
    tochlorophyllide oxidoreductase into isolated plastids. Plant Cell 7:161–172, 1995.

  14. H Holtorf, K Apel. The regulation of NADPH-protochlorophyllide oxidoreductases A and B in green barley
    plants kept under a diurnal light/dark cycle. Planta 199:289–295, 1996.

  15. C Sironval, MR Michel-Wolwertz. Quelques particularités du métabolisme des chlorophylles. In: La Photo-
    synthése. Paris: Edition du CNRS, 1963, pp 317–342.

  16. CC Rebeiz, CA Rebeiz. Ultrastructural study of chloroplast development during photoperiodic greening. In: G
    Akoyunoglou, H Senger, eds. Regulation of Chloroplast Differentiation. New York: Alan R Liss, 1986, pp
    389–397.

  17. U Sperling, F Franck, B van Cleve, G Frick, K Apel, G Armstrong. Etioplast differentiation in Arabidopsis:
    bothPORAandPORBgenes restore the prolamellar body and photoactive protochlorophyllide F655 to the
    cop1 photomorphogenic mutant. Plant Cell 10:283–296, 1998.

  18. E Morren. Dissertation sur les feuilles vertes et colorés envisagées spécialement au point de vue de la chloro-
    phylle et de l’érythophylle. Gand, Belgium, 1858.

  19. E Selstam, A Widell. Characterization of prolamellar bodies, from dark-grown seedlings of Scots pine, con-
    taining light- and NADPH-dependent protochlorophyllide oxidoreductase. Physiol Plant 67:345–352, 1986.

  20. C Forreiter, K Apel. Light-independent and light-dependent protochlorophyllide-reducing activities and two
    distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mungo). Planta
    190:536–543, 1993.

  21. MR Michel-Wolwertz. Chlorophyll formation in cotyledons of Pinus jeffreyiduring germination in the dark.
    Occasional accumulation of protochlorophyll(ide) forms. Plant Sci Lett 8:125–134, 1977.

  22. PM Bramley. Carotenoid biosynthesis: a target site for bleaching herbicides. Biochem Soc Trans 22:625–629,
    1994.

  23. JD Weinstein, SI Beale. Enzymatic conversion of glutamate to -aminolevulinic acid in soluble extracts of the
    unicellular green alga, Chlorella vulgaris. Arch Biochem Biophys 237:454–464, 1985.

  24. D-D Huang, W-Y Wang. Genetic control of chlorophyll biosynthesis: regulation of -aminolevulinic acid syn-
    thesis in Chlamydomonas. Mol Gen Genet 205:217–220, 1986.

  25. C Sundqvist. Transformation of protochlorophyllide formed from exogenous -aminolevulinic acid in contin-
    uous light and in flashlight. Physiol Plant 22:147–156, 1969.

  26. D. von Wettstein, S Gough, CG Kannangara. Chlorophyll biosynthesis. Plant Cell 7:1039–1057, 1995.

  27. RR Klein, JE Mullet. Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher
    plant chloroplast biogenesis. J Biol Chem 261:11138–11145, 1986.

  28. RR Klein, HS Mason, JE Mullet. Light-regulated translation of chloroplast proteins. I. Transcripts of PsaA-
    PsaB, PsbA, and RbcL are associated with polysomes in dark-grown and illuminated barley seedlings. J Cell
    Biol 106:289–301, 1988.

  29. F Franck, P Eulaffroy, R Popovic. Formation of long-wavelength chlorophyllde (Chlide695) is required for the
    assembly of photosystem II in etiolated barley leaves. Photosynth Res 51:107–118, 1997.


CHLOROPHYLL BIOSYNTHESIS DURING PLANT GREENING 277

Free download pdf