Advanced book on Mathematics Olympiad

(ff) #1
3.1 Sequences and Series 115

L−



2

+

(

−L

yn 0
ym

+



2

·

yn 0
ym

+

xn 0
ym

)

<

xm
ym

<L+



2

+

(

−L

yn 0
ym




2

·

yn 0
ym

+

xn 0
ym

)

.

Becauseyn→∞, there existsn 1 >n 0 such that form≥n 1 , the absolute values of the
terms in the parentheses are less than 2. Hence form≥n 1 ,


L−<
xm
ym

<L+.

Sincewas arbitrary, this proves that the sequence(xynn)nconverges toL. 


We continue this discussion with an application to Cesàro means. By definition, the
Cesàro means of a sequence(an)n≥ 1 are


sn=
a 1 +a 2 +···+an
n

,n≥ 1.

Theorem.If(an)n≥ 1 converges toL, then(sn)n≥ 1 also converges toL.


Proof.Apply the Cesàro–Stolz theorem to the sequencesxn=a 1 +a 2 +···+anand
yn=n,n≥1. 


The Cesàro–Stolz theorem can be used to solve the following problems.

340.If(un)nis a sequence of positive real numbers and if limn→∞uun+n^1 =u>0, then
limn→∞n



un=u.

341.Letpbe a real number,p =1. Compute


nlim→∞

1 p+ 2 p+···+np
np+^1

.

342.Let 0<x 0 <1 andxn+ 1 =xn−xn^2 forn≥0. Compute limn→∞nxn.


343.Letx 0 ∈[− 1 , 1 ]and xn+ 1 = xn−arcsin(sin^2 xn) forn ≥ 0. Compute
limn→∞



nxn.

344.For an arbitrary numberx 0 ∈ ( 0 ,π)define recursively the sequence(xn)nby
xn+ 1 =sinxn,n≥0. Compute limn→∞



nxn.

345.Letf:R→Rbe a continuous function such that the sequence(an)n≥ 0 defined
byan =


∫ 1

0 f(n+x)dxis convergent. Prove that the sequence(bn)n≥^0 , with
bn=

∫ 1

0 f (nx)dxis also convergent.

346.Consider the polynomialP(x)=amxm+am− 1 xm−^1 + ··· +a 0 ,ai >0,i =
0 , 1 ,...,m. Denote byAnandGnthe arithmetic and, respectively, geometric
means of the numbersP( 1 ), P ( 2 ),...,P(n). Prove that


nlim→∞

An
Gn

=

em
m+ 1

.
Free download pdf