3.1 Sequences and Series 123
367.For a nonnegative integerk, defineSk(n)= 1 k+ 2 k+···+nk. Prove that
1 +
∑r−^1
k= 0
(
r
k
)
Sk(n)=(n+ 1 )r.
368.Let
an=
4 n+
√
4 n^2 − 1
√
2 n+ 1 +
√
2 n− 1
, forn≥ 1.
Prove thata 1 +a 2 +···+a 40 is a positive integer.
369.Prove that
∑n
k= 1
(− 1 )k+^1
12 − 22 + 32 −···+(− 1 )k+^1 k^2
=
2 n
n+ 1
.
370.Prove that
(^9999) ∑
n= 1
1
(
√
n+
√
n+ 1 )(^4
√
n+^4
√
n+ 1 )
= 9.
371.Letan=
√
1 +( 1 +^1 n)^2 +
√
1 +( 1 −^1 n)^2 ,n≥1. Prove that
1
a 1
+
1
a 2
+···+
1
a 20
is a positive integer.
372.Evaluate in closed form
∑∞
m= 0
∑∞
n= 0
m!n!
(m+n+ 2 )!
.
373.Letan= 3 n+
√
n^2 −1 andbn= 2 (
√
n^2 −n+
√
n^2 +n),n≥1. Show that
√
a 1 −b 1 +
√
a 2 −b 2 +···+
√
a 49 −b 49 =A+B
√
2 ,
for some integersAandB.
374.Evaluate in closed form
∑n
k= 0
(− 1 )k(n−k)!(n+k)!.