Advanced book on Mathematics Olympiad

(ff) #1

164 3 Real Analysis


487.Compute the ratio


1 +π
4
5 !+

π^8
9! +

π^12
13 !+···
1
3 !+

π^4
7 !+

π^8
11 !+

π^12
15 !+···

.

488.Fora>0, prove that
∫∞


−∞

e−x

2
cosaxdx=


πe−a

(^2) / 4
.
489.Find a quadratic polynomialP(x)with real coefficients such that
∣∣
∣∣P(x)+^1
x− 4


∣∣

∣∣≤ 0. 01 , for allx∈[− 1 , 1 ].

490.Compute to three decimal places


∫ 1

0

cos


xdx.

491.Prove that for|x|<1,


arcsinx=

∑∞

k= 0

1

22 k( 2 k+ 1 )

(

2 k
k

)

x^2 k+^1.

492.(a) Prove that for|x|<2,


∑∞

k= 1

1

( 2 k
k

)x^2 k=

x

(

4 arcsin

(x
2

)

+x


4 −x^2

)

( 4 −x^2 )


4 −x^2

.

(b) Prove the identity

∑∞

k= 1

1

( 2 k
k

)=

2 π


3 + 36

27

.

In a different perspective, we have the Fourier series expansions. The Fourier series
allows us to write an arbitrary oscillation as a superposition of sinusoidal oscillations.
Mathematically, a functionf:R→Rthat is continuous and periodic of periodTadmits
a Fourier series expansion


f(x)=a 0 +

∑∞

n= 1

ancos

2 nπ
T
x+

∑∞

n= 1

bnsin

2 nπ
T
x.
Free download pdf