Advanced book on Mathematics Olympiad

(ff) #1
3.3 Multivariable Differential and Integral Calculus 169

for somek≤n. Multiply this equality byn, then apply the operatorx∂x∂ +y∂y∂ to both
sides. The left-hand side becomes


j

(

k
j

)(

x


∂x

+y


∂y

)

xjyk−j

∂kz
∂xj∂yk−j

=


j

j

(

k
j

)

xjyk−j
∂kz
∂xj∂yk−j

+


j

(

k
j

)

xj+^1 yk−j
∂k+^1 z
∂xj+^1 ∂yk−j

+


j

(k−j)

(

k
j

)

xjyk−j

∂kz
∂xj∂yk−j

+


j

(

k
j

)

xjyk−j+^1

∂k+^1 z
∂xj∂yk−j+^1

=k


j

(

k
j

)

xjyk−j
∂kz
∂xj∂yk−j

+


j

((

k
j− 1

)

+

(

k
j

))

xjyk+^1 −j
∂k+^1 z
∂xjyk+^1 −j

=k·n(n− 1 )···(n−k+ 1 )z+


j

(

k+ 1
j

)

xjyk+^1 −j

∂k+^1 z
∂xjyk+^1 −j

.

The base casek=1 implies that the right side equalsn·n(n− 1 )···(n−k+ 1 )z.
Equating the two, we obtain



j

(

k+ 1
j

)

xjyk+^1 −j

∂k+^1 z
∂xjyk+^1 −j
=n(n− 1 )···(n−k+ 1 )(n−k)z,

completing the induction. This proves the formula. 


498.Prove that if the functionu(x, t)satisfies the equation


∂u
∂t

=

∂^2 u
∂x^2

,(x,t)∈R^2 ,

then so does the function

v(x, t)=

1


t

e−
x 42 t
u(xt−^1 ,−t−^1 ), x∈R,t> 0.

499.Assume that a nonidentically zero harmonic functionu(x, y)isn-homogeneous for
some real numbern. Prove thatnis necessarily an integer. (The functionuis called
harmonic if∂


(^2) u
∂x^2 +
∂^2 u
∂y^2 =0.)
500.LetP(x, y)be a harmonic polynomial divisible byx^2 +y^2. Prove thatP(x, y)is
identically equal to zero.
501.Letf :R^2 →Rbe a differentiable function with continuous partial derivatives
and withf( 0 , 0 )=0. Prove that there exist continuous functionsg 1 ,g 2 :R^2 →R
such that
f (x, y)=xg 1 (x, y)+yg 2 (x, y).

Free download pdf