176 3 Real Analysis
V=
1
2
∫∞
0
t^2
t^4 + 1
dt.
A routine but lengthy computation using Jacobi’s method of partial fraction decomposition
shows that the antiderivative of t
2
t^4 + 1 is
1
2
√
2
arctan
x^2 − 1
x
√
2
+
1
4
√
2
ln
x^2 −x
√
2 + 1
x^2 +x
√
2 + 1
+C,
whenceV = π
√
2
8. Equating the two values forV, we obtainI =
√
2 π
4. A similar
argument yieldsJ=
√ 2 π
4.
The solutions to all but last problems below are based on appropriate changes of
coordinates.
514.Compute the integral
∫∫
Dxdxdy, where
D=
{
(x, y)∈R^2 |x≥ 0 , 1 ≤xy≤ 2 , 1 ≤
y
x
≤ 2
}
.
515.Find the integral of the function
f (x, y, z)=
x^4 + 2 y^4
x^4 + 4 y^4 +z^4
over the unit ballB={(x,y,z)|x^2 +y^2 +z^2 ≤ 1 }.
516.Compute the integral
∫∫
D
dxdy
(x^2 +y^2 )^2
,
whereDis the domain bounded by the circles
x^2 +y^2 − 2 x= 0 ,x^2 +y^2 − 4 x= 0 ,
x^2 +y^2 − 2 y= 0 ,x^2 +y^2 − 6 y= 0.
517.Compute the integral
I=
∫∫
D
|xy|dxdy,
where
D=
{
(x, y)∈R^2 |x≥ 0 ,
(
x^2
a^2
+
y^2
b^2
) 2
≤
x^2
a^2
−
y^2
b^2
}
,a,b> 0.