Advanced book on Mathematics Olympiad

(ff) #1
176 3 Real Analysis

V=

1

2

∫∞

0

t^2
t^4 + 1

dt.

A routine but lengthy computation using Jacobi’s method of partial fraction decomposition
shows that the antiderivative of t
2
t^4 + 1 is
1
2



2

arctan

x^2 − 1
x


2

+

1

4


2

ln

x^2 −x


2 + 1

x^2 +x


2 + 1

+C,

whenceV = π


2
8. Equating the two values forV, we obtainI =


2 π
4. A similar
argument yieldsJ=

√ 2 π
4. 
The solutions to all but last problems below are based on appropriate changes of
coordinates.

514.Compute the integral

∫∫

Dxdxdy, where

D=

{

(x, y)∈R^2 |x≥ 0 , 1 ≤xy≤ 2 , 1 ≤

y
x

≤ 2

}

.

515.Find the integral of the function

f (x, y, z)=

x^4 + 2 y^4
x^4 + 4 y^4 +z^4

over the unit ballB={(x,y,z)|x^2 +y^2 +z^2 ≤ 1 }.
516.Compute the integral
∫∫

D

dxdy
(x^2 +y^2 )^2

,

whereDis the domain bounded by the circles

x^2 +y^2 − 2 x= 0 ,x^2 +y^2 − 4 x= 0 ,
x^2 +y^2 − 2 y= 0 ,x^2 +y^2 − 6 y= 0.

517.Compute the integral

I=

∫∫

D

|xy|dxdy,

where

D=

{

(x, y)∈R^2 |x≥ 0 ,

(

x^2
a^2

+

y^2
b^2

) 2


x^2
a^2


y^2
b^2

}

,a,b> 0.
Free download pdf