3.3 Multivariable Differential and Integral Calculus 183
We apply this to
F(z)=
f(z)
z−a
=
(u(x, y)+iv(x, y))(x−iy+α−iβ)
(x+α)^2 +(y+β)^2
,
wherea=α+iβ. It is routine to check thatFis holomorphic. We thus have
∮
f(z)
z−a
dz=
∮
f(z)
z−a
dz.
The change of variablez=a+eiton the right-hand side yields
∮
f(z)
z−a
dz=
∫π
−π
f(a+eit)
eit
ieitdt=i
∫π
−π
f(a+eit)dt.
When→0 this tends to 2πif(a), and we obtain
∮
f(z)
z−a
dz= 2 πif(a).
Hence the desired formula.
526.Assume that a curve(x(t), y(t))runs counterclockwise around a regionD. Prove
that the area ofDis given by the formula
A=
1
2
∮
∂D
(xy′−yx′)dt.
527.Compute the flux of the vector field
−→
F (x, y, z)=x(exy−ezx)
−→
i +y(eyz−exy)
−→
j +z(ezx−eyz)
−→
k
across the upper hemisphere of the unit sphere.
528.Compute
∮
C
y^2 dx+z^2 dy+x^2 dz,
whereCis the Viviani curve, defined as the intersection of the spherex^2 +y^2 +z^2 =
a^2 with the cylinderx^2 +y^2 =ax.
529.Letφ(x, y, z)andψ(x, y, z)be twice continuously differentiable functions in the
region{(x,y,z)|^12 <
√
x^2 +y^2 +z^2 < 2 }. Prove that
∫∫
S
(∇φ×∇ψ)·−→ndS= 0 ,
whereSis the unit sphere centered at the origin,−→nis the normal unit vector to this
sphere, and∇φdenotes the gradient∂φ∂xi+∂φ∂yj+∂φ∂zk.