Advanced book on Mathematics Olympiad

(ff) #1
3.3 Multivariable Differential and Integral Calculus 183

We apply this to


F(z)=
f(z)
z−a

=

(u(x, y)+iv(x, y))(x−iy+α−iβ)
(x+α)^2 +(y+β)^2

,

wherea=α+iβ. It is routine to check thatFis holomorphic. We thus have




f(z)
z−a

dz=




f(z)
z−a

dz.

The change of variablez=a+eiton the right-hand side yields




f(z)
z−a

dz=

∫π

−π

f(a+eit)
eit

ieitdt=i

∫π

−π

f(a+eit)dt.

When→0 this tends to 2πif(a), and we obtain




f(z)
z−a

dz= 2 πif(a).

Hence the desired formula. 


526.Assume that a curve(x(t), y(t))runs counterclockwise around a regionD. Prove
that the area ofDis given by the formula


A=

1

2


∂D

(xy′−yx′)dt.

527.Compute the flux of the vector field
−→
F (x, y, z)=x(exy−ezx)


−→

i +y(eyz−exy)

−→

j +z(ezx−eyz)

−→

k
across the upper hemisphere of the unit sphere.

528.Compute


C

y^2 dx+z^2 dy+x^2 dz,

whereCis the Viviani curve, defined as the intersection of the spherex^2 +y^2 +z^2 =
a^2 with the cylinderx^2 +y^2 =ax.

529.Letφ(x, y, z)andψ(x, y, z)be twice continuously differentiable functions in the
region{(x,y,z)|^12 <



x^2 +y^2 +z^2 < 2 }. Prove that
∫∫

S

(∇φ×∇ψ)·−→ndS= 0 ,

whereSis the unit sphere centered at the origin,−→nis the normal unit vector to this
sphere, and∇φdenotes the gradient∂φ∂xi+∂φ∂yj+∂φ∂zk.
Free download pdf