4.2 Trigonometry 243This telescopes to
1
4[(
−
1
3
)n
cos(
3 n+^1 a)
−
(
−
1
3
)− 1
cosa]
.
Fora= 3 −nπ, we obtain the identity from the statement.
Test your skills against the following problems.688.Prove that
27 sin^39 ◦+9 sin^327 ◦+3 sin^381 ◦+sin^3243 ◦=20 sin 9◦.689.Prove that
1
cot 9◦−3 tan 9◦+
3
cot 27◦−3 tan 27◦+
9
cot 81◦−3 tan 81◦
+27
cot 243◦−3 tan 243◦=10 tan 9◦.690.Prove that
1
sin 45◦sin 46◦+
1
sin 47◦sin 48◦+···+
1
sin 133◦sin 134◦=
1
sin 1◦.
691.Obtain explicit values for the following series:
(a)∑∞
n= 1arctan2
n^2,
(b)∑∞
n= 1arctan8 n
n^4 − 2 n^2 + 5.
692.Forn≥0 let
un=arcsin√
n+ 1 −√
n
√
n+ 2√
n+ 1.
Prove that the seriesS=u 0 +u 1 +u 2 +···+un+···is convergent and find its limit.Now we turn to telescopic products.