Advanced book on Mathematics Olympiad

(ff) #1

252 5 Number Theory


715.For a positive integernand a real numberx, compute the sum



0 ≤i<j≤n


x+i
j


.

716.Prove that for any positive integern,





n=

⌊√

n+

1


n+


n+ 2


.

717.Express


∑n
k= 1 


kin terms ofnanda=


n.

718.Prove the identity


n(n 2 + 1 )

k= 1


− 1 +


1 + 8 k
2


=

n(n^2 + 2 )
3

,n≥ 1.

719.Find all pairs of real numbers(a, b)such thatabn=banfor all positive
integersn.


720.Forpandqcoprime positive integers prove the reciprocity law



p
q


+


2 p
q


+···+


(q− 1 )p
q


=


q
p


+


2 q
p


+···+


(p− 1 )q
p


.

721.Prove that for any real numberxand for any positive integern,


nx≥

x
1

+

 2 x
2

+

 3 x
3

+···+

nx
n

.

722.Does there exist a strictly increasing functionf:N→Nsuch thatf( 1 )=2 and
f (f (n))=f (n)+nfor alln?


723.Suppose that the strictly increasing functionsf, g:N→NpartitionNinto two
disjoint sets and satisfy


g(n)=f(f(kn))+ 1 , for alln≥ 1 ,

for some fixed positive integerk. Prove thatfandgare unique with this property
and find explicit formulas for them.
Free download pdf